植物研究 ›› 2024, Vol. 44 ›› Issue (3): 349-360.doi: 10.7525/j.issn.1673-5102.2024.03.004
• 遗传与育种 • 上一篇
收稿日期:
2024-01-19
出版日期:
2024-05-20
发布日期:
2024-05-14
通讯作者:
李爽
E-mail:shuangli@nefu.edu.cn
作者简介:
武晓倩(1997—),女,硕士研究生,主要从事林木遗传育种方面的研究。
基金资助:
Xiaoqian WU, Xu HE, Jinghui GAO, Shuang LI()
Received:
2024-01-19
Online:
2024-05-20
Published:
2024-05-14
Contact:
Shuang LI
E-mail:shuangli@nefu.edu.cn
摘要:
小黑杨(Populus simonii×P. nigra)是东北地区速生、耐寒、材性优良的树种。为了创制适种范围广、耐旱性状明显改良的林木新种质,利用小黑杨为材料,以干旱胁迫关键响应因子PsnNAC007转录因子为对象,创制了小黑杨过表达OE-PsnNAC007转基因植株。对OE-PsnNAC007转基因植株的生长指标、干旱胁迫适应能力、净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)、导水率指标、细胞形态和木材组分进行分析。结果显示:与野生型小黑杨相比,转基因植株的生长情况无明显差异,而干旱胁迫成活率提高了26.15%。在干旱胁迫条件下,转基因植株气孔导度减小、蒸腾速率下降、水分利用效率明显提高,植株茎干的导水率损失显著减少。解剖学分析发现,PsnNAC007的过量表达导致植株茎干产生更多、更小的导管细胞,这种细胞特性有利于植株在干旱条件下维持水分连续高效的运输。木材组分分析发现,转基因植株茎干木质素沉积明显增强,构成纤维素、半纤维素的单糖含量均无明显变化。
中图分类号:
武晓倩, 何旭, 高境烩, 李爽. 转PsnNAC007高耐旱性小黑杨种质创制及其特性分析[J]. 植物研究, 2024, 44(3): 349-360.
Xiaoqian WU, Xu HE, Jinghui GAO, Shuang LI. Germplasm Innovation and Characteristic Analysis of Transgenic PsnNAC007Populus simonii×P. nigra with High Drought Tolerance[J]. Bulletin of Botanical Research, 2024, 44(3): 349-360.
表1
引物序列
引物名称 Primer name | 引物序列(5′→3′) Sequences(5′→3′) | 用途 Application |
---|---|---|
PsnNAC007-F | CACCATGAAAGGAAATAGATCAGCAG | PsnNAC007基因克隆 PsnNAC007 gene cloning |
PsnNAC007-R | GCACACATCAAGAACCCTATT | |
PsnNAC007-XbaⅠ-F | CTAGTCTAGAATGAAAGGAAATAGATCAGCAG | pBI121-35S-PsnNAC007载体构建 pBI121-35S-PsnNAC007 vector construction |
PsnNAC007-SacⅠ-R | CTAGGAGCTCGCACACATCAAGAACCCTATT | |
35S-F | CCCACTATCCTTCGCAAGACC | 转基因鉴定 Transgenic identification |
PsnNAC007-middle-R | CGACCAATGGGTTTATCTGCTC | |
RT-PsnActin-F | GGATATTCAGCCCCTTGTCTG- | 相对表达量检测引物 Relative expression level detection primers |
RT-PsnActin-R | TCGTCACCAACATAAGCATCC | |
RT-PsnNAC007-F | ATGAAAGGAAATAGATCAGCAGAT | |
RT-PsnNAC007-R | ATTGGCCTCCACATTTCTTAAGC |
表2
小黑杨野生型和 PsnNAC007 过表达植株木材组分
参数 Parameter | 野生型 Wild-type/% | PsnNAC007过表达植株 OE-PsnNAC007/% |
---|---|---|
不可溶性木质素 Acid-insoluble lignin | 20.32±0.23 | 22.43±0.28** |
可溶性木质素 Acid-soluble lignin | 2.96±0.07 | 2.64±0.03** |
总木质素Total lignin | 23.29±0.29 | 25.07±0.30** |
葡萄糖Glucose | 53.37±0.17 | 53.63±0.19 |
木糖Xylose | 11.39±0.26 | 11.59±0.40 |
半乳糖Galactose | 1.34±0.05 | 1.28±0.03 |
阿拉伯糖Arabinose | 2.30±0.13 | 2.29±0.05 |
总碳水化合物 Total carbohydrate | 68.41±0.38 | 68.79±0.48 |
1 | 山仑,邓西平,康绍忠.我国半干旱地区农业用水现状及发展方向[J].水利学报,2022(9):27-31. |
SHAN L, DENG X P, KANG S Z.Current situation and perspective of agricultural water used in semiarid area of China[J].Journal of Hydraulic Engineering,2022(9):27-31. | |
2 | 许恩银,聂影,芮晓东.基于森林资源清查数据的林地利用效率变化研究[J].南京林业大学学报(自然科学版),2022,46(5):213-220. |
XU E Y, NIE Y, RUI X D.Analysis on the forest land use efficiency changes based on forest resource inventory data[J].Journal of Nanjing Forestry University (Natural Sciences Edition),2022,46(5):213-220. | |
3 | BANDURSKA H.Drought stress responses:coping strategy and resistance[J].Plants,2022,11(7):922. |
4 | BRÉDA N,HUC R, GRANIER A,et al.Temperate forest trees and stands under severe drought:a review of ecophysiological responses,adaptation processes and long-term consequences[J].Annals of Forest Science,2006,63(6):625-644. |
5 | FICHOT R, LAURANS F, MONCLUS R,et al.Xylem anatomy correlates with gas exchange,water-use efficiency and growth performance under contrasting water regimes:evidence from Populus deltoides × Populus nigra hybrids[J].Tree Physiology,2009,29(12):1537-1549. |
6 | LIMOUSIN J M, LONGEPIERRE D,HUC R,et al.Change in hydraulic traits of mediterranean Quercus ilex subjected to long-term throughfall exclusion[J].Tree Physiology,2010,30(8):1026-1036. |
7 | VENTURAS M D, SPERRY J S, HACKE U G.Plant xylem hydraulics:What we understand,current research,and future challenges[J].Journal of Integrative Plant Biology,2017,59(6):356-389. |
8 | TONG S F, WANG Y B, CHEN N N,et al.Ptonf-yc9-srmt-ptord26 module regulates the high saline tolerance of a triploid poplar[J].Genome Biology,2022,23(1):148. |
9 | LI S, LIN Y C J, WANG P Y. et al.The AREB1 transcription factor influences histone acetylation to regulate drought responses and tolerance in Populus trichocarpa [J].The Plant Cell,2019,31(3):663-686. |
10 | 杜兆伟,郑唐春,李爽,等.小黑杨快繁与再生体系的优化[J].植物研究,2015,35(6):904-907. |
DU Z W, ZHENG T C, LI S,et al.Rapid propagation and regeneration system of Populus simonii×Populus nigra [J].Bulletin of Botanical Research,2015,35(6):904-907. | |
11 | 李晶,王福森,李树森,等.几个杨树新品系抗寒性测定试验[J].防护林科技,2012(1):59-61. |
LI J, WANG F S, LI S S,et al.Cold-resistance determination for several new strains of poplar[J].Protection Forest Science and Technology,2012(1):59-61. | |
12 | 何旭,高源,张群野,等.白城小黑杨遗传转化体系建立及其应用[J].植物研究,2023,43(5):667-678. |
HE X, GAO Y, ZHANG Q Y,et al.Establishment and application of genetic transformation system for Populus simonii×P.nigra ‘Baicheng’[J].Bulletin of Botanical Research,2023,43(5):667-678. | |
13 | ILYAS M, NISAR M, KHAN N,et al.Drought tolerance strategies in plants:a mechanistic approach[J].Journal of Plant Growth Regulation,2020,40(3):926-944. |
14 | PASCUAL M B, DE LA TORRE F, CAÑAS R A,et al.NAC transcription factors in woody plants[J].Progress in Botany,2018,80:195-222. |
15 | HAN K J, ZHAO Y, SUN Y H,et al.NACs,generalist in plant life[J].Plant Biotechnology Journal,2023,21(12):2433-2457. |
16 | NURUZZAMAN M, MANIMEKALAI R, SHARONI A M,et al.Genome-wide analysis of NAC transcription factor family in rice[J].Gene,2010,465(1/2):30-44. |
17 | JEONG J S, KIM Y S, BAEK K H,et al.Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions[J].Plant Physiology,2010,153(1):185-197. |
18 | CHEN D D, CHAI S C, MCINTYRE C L,et al.Overexpression of a predominantly root-expressed NAC transcription factor in wheat roots enhances root length,biomass and drought tolerance[J].Plant Cell Reports,2018,37(2):225-237. |
19 | YANG C F, HUANG Y Z, LV W H,et al. GmNAC8 acts as a positive regulator in soybean drought stress[J].Plant Science,2020,293:110442. |
20 | WANG H L, YANG Q, TAN S Y,et al.Regulation of cytokinin biosynthesis using PtRD26pro-IPT module improves drought tolerance through PtARR10-PtYUC4/5-mediated reactive oxygen species removal in Populus [J].Journal of Integrative Plant Biology,2022,64(3):771-786. |
21 | CHEN Z H, PENG Z X, LIU S Q,et al.Overexpression of PeNAC122 gene promotes wood formation and tolerance to osmotic stress in poplars[J].Physiologia Plantarum,2022,174(4):e13751. |
22 | 李开隆,杨传平,刘桂丰.黑龙江省杨树遗传育种研究进展[J].东北林业大学学报,2003,31(4):45-48. |
LI K L, YANG C P, LIU G F.Research Progresses of genetics and breeding of Populus in Heilongjiang province[J].Journal of Northeast Forestry University,2003,31(4):45-48. | |
23 | 吴丽丽,高福玲,王雷,等.杨树幼茎特异表达基因及PsnLAC基因的克隆[J].东北林业大学学报,2011,39(4):5-7. |
WU L L, GAO F L, WANG L,et al.Specific gene expression in stem of Populus simonii×P.nigra and cloning of PsnLAC gene[J].Journal of Northeast Forestry University,2011,39(4):5-7. | |
24 | 王遂,刘梦然,黄海娇,等.转TaLEA基因小黑杨抗寒株系的筛选[J].东北林业大学学报,2011,39(9):5-7. |
WANG S, LIU M R, HUANG H J,et al.Selection of cold resistant strains from TaLEA gene transferred Populus simonii×P.nigra [J].Journal of Northeast Forestry University,2011,39(9):5-7. | |
25 | WANG S J, FAN Y, DU S H. et al.PtaERF194 inhibits plant growth and enhances drought tolerance in poplar[J].Tree Physiology,2022,42(8):1678-1692. |
26 | RODRIGUEZ-ZACCARO F D, GROOVER A.Wood and water:How trees modify wood development to cope with drought[J].Plants,People,Planet,2019,1(4):346-355. |
27 | ECKERT C, SHARMIN S, KOGEL A,et al.What makes the wood?Exploring the molecular mechanisms of xylem acclimation in hardwoods to an ever-changing environment[J].Forests,2019,10(4):358. |
28 | BARIGAH T S, CHARRIER O, DOURIS M,et al.Water stress-induced xylem hydraulic failure is a causal factor of tree mortality in beech and poplar[J].Annals of Botany,2013,112(7):1431-1437. |
29 | LAUDER J D.From the cell to the stand:trait-based approaches to understanding forest response to climate cha-nge[M].Merced:University of California,2020:101-113. |
30 | BANG S W, LEE D K, JUNG H,et al.Overexpression of OsTF1L,a rice HD-Zip transcription factor,promotes lignin biosynthesis and stomatal closure that improves drought tolerance[J].Plant Biotechnology Journal,2019,17(1):118-131. |
31 | MÉNARD D, BLASCHEK L, KRIECHBAUM K,et al.Plant biomechanics and resilience to environmental changes are controlled by specific lignin chemistries in each vascular cell type and morphotype[J].The Plant Cell,2022,34(12):4877-4896. |
32 | SAINI R, KAUR A, SAINI J K,et al.Trends in lignin biotransformations for bio-based products and energy applications[J].BioEnergy Research,2023,16(1):88-104. |
33 | ZAHRA N, HAFEEZ M B, KAUSAR A,et al.Plant photosynthetic responses under drought stress:effects and management[J].Journal of Agronomy and Crop Science,2023,209(5):651-672. |
[1] | 何旭, 高源, 张群野, 周晨光, 李伟, 李爽. 白城小黑杨遗传转化体系建立及其应用[J]. 植物研究, 2023, 43(5): 667-678. |
[2] | 孙宇, 张艺腾, 成慧慧. 紫穗槐WRKY42基因耐盐碱性的功能研究[J]. 植物研究, 2023, 43(4): 612-621. |
[3] | 郑占敏, 商玉冰, 周广波, 肖迪, 刘轶, 由香玲. PsnHB13与PsnHB15在小黑杨中的遗传转化与功能分析[J]. 植物研究, 2023, 43(3): 340-350. |
[4] | 廖诗贤, 王宇婷, 董立本, 顾咏梅, 贾丰璘, 姜廷波, 周博如. 小黑杨转录因子PsnbZIP1应答盐胁迫功能分析[J]. 植物研究, 2023, 43(2): 288-299. |
[5] | 刘森尧, 贾丰璘, 国庆, 樊高锋, 周博如, 姜廷波. 小黑杨转录因子PsnbHLH162基因在盐和低温胁迫下应答分析[J]. 植物研究, 2023, 43(2): 300-310. |
[6] | 杜金霞, 申婷婷, 王浩然, 林一萍, 李慧玉, 张连飞. 白桦BpSPL9基因抑制表达载体的构建及遗传转化研究[J]. 植物研究, 2023, 43(1): 30-35. |
[7] | 钱婷, 赵凡, 张玉洁, 李雪丽, 孙坤, 张辉. 肋果沙棘和西藏沙棘转录因子bHLH94基因对海拔适应性分化的研究[J]. 植物研究, 2022, 42(6): 976-985. |
[8] | 李登高, 林睿, 穆青慧, 周娜, 张焱如, 白薇. 马铃薯StNPR4基因的克隆与功能分析[J]. 植物研究, 2022, 42(5): 821-829. |
[9] | 陈思思, 谢牧洪, 崔茂凯, 李文凯, 徐正刚, 贾彩霞, 杨桂燕. 构树转录因子BpbZIP1的鉴定及镉胁迫响应分析[J]. 植物研究, 2022, 42(3): 394-402. |
[10] | 魏斌, 李毅, 苏世平. 外源脯氨酸对自然干旱下白刺叶片气孔的影响[J]. 植物研究, 2022, 42(3): 492-501. |
[11] | 李麒, 闫思宇, 陈肃. 白桦BpERF98基因的遗传转化及非生物胁迫应答反应[J]. 植物研究, 2022, 42(1): 93-103. |
[12] | 韩连斌, 国庆, 赵凯, 姜廷波, 周博如, 李莉. 小黑杨HD-Zip转录因子PsnHB63基因克隆及表达分析[J]. 植物研究, 2021, 41(6): 1006-1014. |
[13] | 何凤, 杜红岩, 刘攀峰, 王璐, 庆军, 杜兰英. 干旱胁迫对杜仲叶片结构特征的影响[J]. 植物研究, 2021, 41(6): 947-956. |
[14] | 田双慧, 程赫, 张洋, 刘聪, 夏德安, 魏志刚. 毛果杨类胡萝卜素裂解双加氧酶基因家族全基因组水平鉴定及其干旱与盐胁迫响应分析[J]. 植物研究, 2021, 41(6): 993-1005. |
[15] | 杜恬恬, 李会萍, 王博雅, 欧倩, 黄艳, 曹颖, 胡尚连. 梁山慈竹DfMYB3基因克隆及启动子分析[J]. 植物研究, 2021, 41(5): 729-737. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||