植物研究 ›› 2024, Vol. 44 ›› Issue (1): 62-74.doi: 10.7525/j.issn.1673-5102.2024.01.009
收稿日期:
2023-03-23
出版日期:
2024-01-20
发布日期:
2023-12-27
通讯作者:
章英才
E-mail:yingcaizh@163.com
作者简介:
E-mail:yingcaizh@163.com。基金资助:
Jing WANG, Yingcai ZHANG(), Shanshan TAO, Xue YANG
Received:
2023-03-23
Online:
2024-01-20
Published:
2023-12-27
Contact:
Yingcai ZHANG
E-mail:yingcaizh@163.com
摘要:
以3种不同浓度的果胶酶处理灵武长枣(Ziziphus jujuba ‘Lingwu Changzao’)4个不同发育时期的果实,采用免疫细胞化学技术,在细胞水平上对果实阿拉伯半乳糖蛋白(AGPs)表位进行原位分析,探讨果胶酶对其不同发育时期的果实中AGPs分布的影响,为明确果胶酶对果实成熟软化的影响提供解剖学依据。结果表明:JIM13、JIM8和MAC204抗体所标记的抗原荧光强弱在各时期果实的不同组织存在一定的差异。当果肉组织用较低浓度的果胶酶0.028 U·mL-1(E1)处理,果皮组织结构没有明显的变化,果皮及内部薄壁细胞细胞壁表面和细胞间隙中的AGPs抗原表位减少;0.056 U·mL-1(E2)和0.084 U·mL-1(E3)浓度果胶酶处理的果实,果实组织细胞壁解体程度增加,果皮及内部薄壁细胞细胞壁中AGPs抗原表位检测量逐渐降低,果胶酶浓度的增加导致AGPs在果实所有表位排列的更大影响和较低的荧光信号。经果胶酶最高浓度0.084 U·mL-1(E3)处理后,Calcofluor White染色显示细胞壁区域荧光也不同程度减弱或降低,AGPs分布的紊乱和抗原表位的缺失与细胞中纤维素组装的变化有关。比较分析表明,不同发育时期的果实AGPs碳水化合物的分布不同,这与组织结构的变化有关;果胶酶作用下AGPs聚糖链的缺失导致细胞壁组分之间的相关性建立和细胞壁结构的重塑受阻,诱导了整个细胞壁结构的改变,影响了果实的成熟。
中图分类号:
王静, 章英才, 陶珊珊, 杨雪. 果胶酶对灵武长枣果实发育中阿拉伯半乳糖蛋白分布的影响[J]. 植物研究, 2024, 44(1): 62-74.
Jing WANG, Yingcai ZHANG, Shanshan TAO, Xue YANG. Effects of Pectinase on the Distribution of Arabinogalactan Proteins in Developing Fruit of Ziziphus jujuba ‘Lingwu Changzao’[J]. Bulletin of Botanical Research, 2024, 44(1): 62-74.
1 | 魏建梅,马锋旺,关军锋,等.京白梨果实后熟软化过程中细胞壁代谢及其调控[J].中国农业科学,2009,42(8):2987-2996. |
WEI J M, MA F W, GUAN J F,et al.Cell wall metabolism and its regulation in harvested Pyrus ussuriensis Maxin.cv.Jingbaili fruit during ripening[J].Scientia Agricultura Sinica,2009,42(8):2987-2996. | |
2 | BRUMMELL D A, CIN V D, CRISOSTO C H,et al.Cell wall metabolism during maturation,ripening and senescence of peach fruit[J].Journal of Experimental Botany,2004,55(405):2029-2039. |
3 | GOULAO L F, OLIVEIRA C M.Cell wall modifications during fruit ripening:when a fruit is not the fruit[J].Trends in Food Science & Technology,2008,19(1):4-25. |
4 | SILA D N, VAN BUGGENHOUT S, DUVETTER T,et al.Pectins in processed fruits and vegetables:Part Ⅱ-structure-function relationships[J].Comprehensive Reviews in Food Science and Food Safety,2009,8(2):86-104. |
5 | HYODO H, TERAO A, FURUKAWA J,et al.Tissue specific localization of pectin-Ca2+ cross-linkages and pectin methyl-esterification during fruit ripening in tomato(Solanum lycopersicum)[J].PLoS One,2013,8(11):e78949. |
6 | CHYLIŃSKA M, SZYMAŃSKA-CHARGOT M, DERYŁO K,et al.Changing of biochemical parameters and cell wall polysaccharides distribution during physiological development of tomato fruit[J].Plant Physiology and Biochemistry,2017,119:328-337. |
7 | WANG D D, YEATS T H, ULUISIK S,et al.Fruit softening:revisiting the role of pectin[J].Trends in Plant Science,2018,23(4):302-310. |
8 | MOORE J P, FANGEL J U, WILLATS W G T,et al.Pectic-β(1,4)-galactan,extensin and arabinogalactan-protein epitopes differentiate ripening stages in wine and table grape cell walls[J].Annals of Botany,2014,114(6):1279-1294. |
9 | LESZCZUK A, CHYLIŃSKA M, ZIĘBA E,et al.Structural network of arabinogalactan proteins(AGPs) and pectins in apple fruit during ripening and senescence processes[J].Plant Science,2018,275:36-48. |
10 | LESZCZUK A, CHYLIŃSKA M, ZDUNEK A.Distribution of arabinogalactan proteins and pectins in the cells of apple(Malus×domestica) fruit during post-harvest storage[J].Annals of Botany,2019,123(1):47-55. |
11 | SEIFERT G J, ROBERTS K.The biology of arabinogalactan proteins[J].Annual Review of Plant Biology,2007,58:137-161. |
12 | SCHULTZ C J, JOHNSON K L, CURRIE G,et al.The classical arabinogalactan protein gene family of Arabidopsis [J].Plant Cell,2000,12(9):1751-1767. |
13 | SHOWALTER A M, BASU D.Extensin and arabinogalactan-protein biosynthesis:glycosyltransferases,research challenges,and biosensors[J].Frontiers in Plant Science,2016,7:814. |
14 | MA Y L, YAN C C, LI H M,et al.Bioinformatics prediction and evolution analysis of arabinogalactan proteins in the plant kingdom[J].Frontiers in Plant Science,2017,8:66. |
15 | SU S H, HIGASHIYAMA T.Arabinogalactan proteins and their sugar chains:functions in plant reproduction,research methods,and biosynthesis[J].Plant Reproduction,2018,31:67-75. |
16 | GAO M G, KIELISZEWSKI M J, LAMPORT D T A,et al.Isolation,characterization and immunolocalization of a novel,modular tomato arabinogalactan-protein corresponding to the LeAGP-1 gene[J].The Plant Journal,1999,18(1):43-55. |
17 | LIU Z Y, PERSSON S, SÁNCHEZ-RODRÍGUEZ C.At the border:the plasma membrane-cell wall continuum[J].Journal of Experimental Botany,2015,66(6):1553-1563. |
18 | TAN L, TEES D, QIAN J,et al.Intermolecular interactions between glycomodules of plant cell wall arabinogalactan-proteins and extensins[J].The Cell Surface,2018,1:25-33. |
19 | TAN L, EBERHARD S, PATTATHIL S,et al.An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein[J].The Plant Cell,2013,25(1):270-287. |
20 | HIJAZI M, VELASQUEZ S M, JAMET E,et al.An update on post-translational modifications of hydroxyproline-rich glycoproteins:toward a model highlighting their contribution to plant cell wall architecture[J].Frontiers in Plant Science,2014,5:395. |
21 | MARERI L, ROMI M, CAI G.Arabinogalactan proteins:actors or spectators during abiotic and biotic stress in plants?[J].Plant Biosystems,2019,153(1):173-185. |
22 | FRAGKOSTEFANAKIS S, DANDACHI F, KALAITZIS P.Expression of arabinogalactan proteins during tomato fruit ripening and in response to mechanical wounding,hypoxia and anoxia[J].Plant Physiology and Biochemistry,2012,52:112-118. |
23 | LESZCZUK A, SZCZUKA E, WYDRYCH J,et al.Changes in arabinogalactan proteins (AGPs) distribution in apple(Malus×domestica) fruit during senescence[J].Postharvest Biology and Technology,2018,138:99-106. |
24 | KOTAKE T, TSUCHIYA K, AOHARA T,et al.An α-L-arabinofuranosidase/β-D-xylosidase from immature seeds of radish(Raphanus sativus L.)[J].Journal of Experimental Botany,2006,57(10):2353-2362. |
25 | SMITH D L, ABBOTT J A, GROSS K C.Down-regulation of tomato β-galactosidase 4 results in decreased fruit softening[J].Plant Physiology,2002,129(4):1755-1762. |
26 | KONISHI T, KOTAKE T, SORAYA D,et al.Properties of family 79 β-glucuronidases that hydrolyze β-glucuronosyl and 4-O-methyl-β-glucuronosyl residues of arabinogalactan-protein[J].Carbohydrate Research,2008,343(7):1191-1201. |
27 | 王静,章英才,陶珊珊.灵武长枣果实阿拉伯半乳糖蛋白免疫荧光定位[J].电子显微学报,2022,41(3):293-307. |
WANG J, ZHANG Y C, TAO S S.Immunofluorescence localization of arabinogalactan proteins in Ziziphus jujuba Mill cv.Lingwuchangzao fruit[J].Journal of Chinese Electron Microscopy Society,2022,41(3):293-307. | |
28 | 王静,章英才,陶珊珊.灵武长枣果实发育过程中阿拉伯半乳糖蛋白组织化学分布[J].植物研究,2022,42(6):1106-1120. |
WANG J, ZHANG Y C, TAO S S.Histochemical localization of arabinogalactan proteins during fruit development from Ziziphus jujuba ‘Lingwu Changzao’[J].Bulletin of Botanical Research,2022,42(6):1106-1120. | |
29 | LESZCZUK A, CHYLIŃSKA M, ZDUNEK A.Enzymes and vitamin C as factors influencing the presence of arabinogalactan proteins(AGPs) in Solanum lycopersicum fruit[J].Plant Physiology and Biochemistry,2019,139:681-690. |
30 | 吴洪娟,李桂芝,周力,等.树脂包埋半薄切片在视神经组织学和免疫组织化学研究中的应用[J].中国组织化学与细胞化学杂志,2017,26(5):519-522. |
WU H J, LI G Z, ZHOU L,et al.Application of resin-embedded semi-thin section in histological and immunohistochemical study of optic nerve[J].Chinese Journal of Histochemistry and Cytochemistry,2017,26(5):519-522. | |
31 | VIDECOQ P, BARBACCI A, ASSOR C,et al.Examining the contribution of cell wall polysaccharides to the mechanical properties of apple parenchyma tissue using exogenous enzymes[J].Journal of Experimental Botany,2017,68(18):5137-5146. |
32 | MARÍN-RODRÍGUEZ M C, ORCHARD J, SEYMOUR G B.Pectate lyases,cell wall degradation and fruit softening[J].Journal of Experimental Botany,2002,53(377):2115-2119. |
33 | GWANPUA S G, VAN BUGGENHOUT S, VERLINDEN B E,et al.Pectin modifications and the role of pectin-degrading enzymes during postharvest softening of Jonagold apples[J].Food Chemistry,2014,158:283-291. |
34 | SEGONNE S M, BRUNEAU M, CELTON J M,et al.Multiscale investigation of mealiness in apple:an atypical role for a pectin methylesterase during fruit maturation[J].BMC Plant Biology,2014,14:375. |
35 | FISCHER R L, BENNETT A B.Role of cell wall hydrolases in fruit ripening[J].Annual Review of Plant Physiology and Plant Molecular Biology,1991,42(1):675-703. |
36 | TUCKER G A, SCHINDLER C B, ROBERTS J A.Flower abscission in mutant tomato plants[J].Planta,1984,160(2):164-167. |
37 | 段学武,张昭其,季作梁.PG酶与果实的成熟软化[J].果树学报,2001,18(4):229-233. |
DUAN X W, ZHANG Z Q, JI Z L.Advances in research on the relationship between polygalcturonase and fruit softening[J].Journal of Fruit Science,2001,18(4):229-233. | |
38 | YASHODA H M, PRABHA T N, THARANATHAN R N.Mango ripening-chemical and structural characterization of pectic and hemicellulosic polysaccharides[J].Carbohydrate Research,2005,340(7):1335-1342. |
39 | ROUDIER F, FERNANDEZ A G, FUJITA M,et al.COBRA,an Arabidopsis extracellular glycosyl-phosphatidyl inositol-anchored protein,specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation[J].The Plant Cell,2005,17(6):1749-1763. |
40 | WANG D D, SAMSULRIZAL N, YAN C,et al.Characterization of CRISPR mutants targeting genes modulating pectin degradation in ripening tomato[J].Plant Physiology,2019,179(2):544-557. |
41 | HORN S J, VAAJE-KOLSTAD G, WESTERENG B,et al.Novel enzymes for the degradation of cellulose[J].Biotechnology for Biofuels,2012,5:45. |
42 | 李欢,张舒怡,张钟,等.鲜食枣与制干枣的成熟软化机理差异研究[J].西北林学院学报,2017,32(5):137-143. |
LI H, ZHANG S Y, ZHANG Z,et al.Differences in ripening and softening mechanism between fresh-eating and dried jujube fruit[J].Journal of Northwest Forestry University,2017,32(5):137-143. | |
43 | 阚娟,刘涛,金昌海,等.硬溶质型桃果实成熟过程中细胞壁多糖降解特性及其相关酶研究[J].食品科学,2011,32(4):268-274. |
KAN J, LIU T, JIN C H,et al.Degradation of cell wall polysaccharides and related enzyme activities during non-melting-flesh peach fruit softening[J].Food Science,2011,32(4):268-274. | |
44 | DUMVILLE J C, FRY S C.Solubilisation of tomato fruit pectins by ascorbate:a possible non-enzymic mechanism of fruit softening[J].Planta,2003,217:951-961. |
45 | HARPSTER M H, BRUMMELL D A, DUNSMUIR P.Suppression of a ripening-related endo-1,4-β-glucanase in transgenic pepper fruit does not prevent depolymerization of cell wall polysaccharides during ripening[J].Plant Molecular Biology,2002,50:345-355. |
[1] | 王仁睿, 刘鑫, 李杰. 濒危植物春剑的胚胎发育及果实和种子特征研究[J]. 植物研究, 2023, 43(6): 953-960. |
[2] | 王静, 章英才, 陶珊珊. 灵武长枣果实发育过程中阿拉伯半乳糖蛋白组织化学分布[J]. 植物研究, 2022, 42(6): 1106-1120. |
[3] | 王思涵, 杨涛, 张金柱, 董婕, 寇志玲, 车代弟. 野生玫瑰果实发育过程中种子的细胞组织结构和内源激素变化对其休眠性的影响[J]. 植物研究, 2021, 41(3): 387-394. |
[4] | 陈华峰, 唐玉情, 潘亚婕, 郭晓瑞. 果实风味的代谢基础及其调控机制研究进展[J]. 植物研究, 2021, 41(3): 474-480. |
[5] | 邓贤兰, 陈霞霞, 张争光. 井冈山地区18种唇形科植物果实形状及表面微形态特征研究[J]. 植物研究, 2020, 40(6): 820-829. |
[6] | 曹董玲, 张学杰, 刘玫. 独行菜族8属(十字花科)植物果实及种子微形态研究[J]. 植物研究, 2019, 39(5): 673-682. |
[7] | 杜庆鑫, 庆军, 王璐, 刘攀峰, 何凤, 朱利利, 杜红岩. 杜仲种质资源果实主要数量性状变异及概率分级[J]. 植物研究, 2019, 39(3): 387-394. |
[8] | 周敏, 蒋丹, 刘玥秀, 王小蓉, 汤浩茹, 陈清. P119驱动amiRNA介导的PL基因沉默对草莓果实硬度的影响[J]. 植物研究, 2019, 39(3): 441-449. |
[9] | 陈龙涛, 杨博文, 王迎男, 樊明寿. 钙试剂处理对早期榛子果实发育与成果率的影响[J]. 植物研究, 2018, 38(4): 597-603. |
[10] | 昝鹏, 张琳, 祖元刚, 杨磊, 丛赢. 山桐子(Idesia polycarpa Maxim)果实多酚的抗炎、抗菌活性研究[J]. 植物研究, 2016, 36(6): 955-960. |
[11] | 周琳;张会慧;魏殿文;张悦*. 施肥对蓝莓植株生长、叶片叶绿素荧光特性和果实品质的影响[J]. 植物研究, 2015, 35(6): 854-859. |
[12] | 孟庆焕1;祖元刚1;王化2;王洪政1;姜涛3;吴薇薇1;钟晨1;段喜华1*. 酶法辅助乙醇优选牡丹种皮总黄酮[J]. 植物研究, 2015, 35(4): 628-631. |
[13] | 王晓冬;贺国强;赵利群;胡彦波;李长海*. 遮阴对树莓光合特性和果实性状的影响[J]. 植物研究, 2014, 34(5): 599-603. |
[14] | 李玲玲;李凤日;贾炜玮;董利虎. 红松人工林林木果实产量预估模型[J]. 植物研究, 2014, 34(3): 349-355. |
[15] | 宋春凤;刘玉龙;刘启新*. 川明参果实发育过程中解剖结构的变化[J]. 植物研究, 2013, 33(6): 659-665. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||