植物研究 ›› 2024, Vol. 44 ›› Issue (2): 298-306.doi: 10.7525/j.issn.1673-5102.2024.02.015
• 分子生物学 • 上一篇
荀宝茹, 秦洪涛, 马蕊, 郭楠枫, 刘运平, 吴莹, 蓝兴国()
收稿日期:
2023-11-29
出版日期:
2024-03-20
发布日期:
2024-03-11
通讯作者:
蓝兴国
E-mail:lanxingguo@126.com
作者简介:
荀宝茹(1999—),女,硕士研究生,主要从事植物发育研究。
基金资助:
Baoru XUN, Hongtao QIN, Rui MA, Nanfeng GUO, Yunping LIU, Ying WU, Xingguo LAN()
Received:
2023-11-29
Online:
2024-03-20
Published:
2024-03-11
Contact:
Xingguo LAN
E-mail:lanxingguo@126.com
摘要:
FERONIA(FER)受体激酶在有性生殖中的花粉与柱头信号识别中发挥重要作用,为分析类受体激酶FERONIA(FER)在羽衣甘蓝(Brassica oleracea var. acephala)授粉中的作用,以羽衣甘蓝自交不亲和系(S13-bS13-b )为研究材料,采用RT-PCR从柱头中克隆得到BoFER基因,获得的BoFER cDNA序列,全长2 682 bp编码893个氨基酸,其含有高度保守激酶结构域和Ser/Thr激酶结合位点。利用qRT-PCR技术对BoFER在授粉过程中的表达水平进行分析,结果发现BoFER在不亲和授粉过程其表达量逐渐升高,而在亲和授粉过程中其表达量逐渐降低。利用酵母双杂交分析BoFER与已知的自交不亲和相关蛋白的相互作用,结果显示BoFER与S位点受体激酶BoSRK13-b的激酶域存在相互作用。
中图分类号:
荀宝茹, 秦洪涛, 马蕊, 郭楠枫, 刘运平, 吴莹, 蓝兴国. 羽衣甘蓝类受体激酶FERONIA基因克隆、表达及与相互作用蛋白分析[J]. 植物研究, 2024, 44(2): 298-306.
Baoru XUN, Hongtao QIN, Rui MA, Nanfeng GUO, Yunping LIU, Ying WU, Xingguo LAN. Gene Cloning, Expression and Interaction Protein Analysis of FERONIA in Brassica oleracea var. acephala[J]. Bulletin of Botanical Research, 2024, 44(2): 298-306.
表1
引物信息
引物名 Primer name | 引物序列(5′→3′) Primer sequence(5′→3′) | 用途 Application |
---|---|---|
BoFER-CDS-F | ATGACGTTCACGGAGGGACG | 基因克隆 Gene clone |
BoFER-CDS-R | CTAACGTCCCTTAGGGTTCA | |
BoFER-KD-F | GCGTACCGGAGACGGAAGAG | |
BoFER-KD-R | CTAACGTCCCTTAGGGTTCA | |
qRT-PCR-BoFER-F1 | TCCGCCAACATCAATAAAATTAACC | qRT-PCR |
qRT-PCR-BoFER-R1 | GGCTTGGTGATTGAGTTAGGATG | |
BoACTIN-F | GCAGACCGTA TGAGCAAAGA | 内参基因 Reference gene |
BoACTIN-R | GGAGGTGCAACCACCTTAAT | |
PGADT7-FER-KD-F | CAGATTACGCTCATATGGCGTACCGGAGACGGAAGAG | 酵母载体构建 Yeast vector construction |
PGADT7-FER-KD-R | CGAGCTCGATGGATCCCTAACGTCCCTTAGGGTTCA |
表2
BoFER 酵母共转化质粒组合
质粒名称 Plasmid name | 用途 function |
---|---|
pGADT7-T+pGBKT7-53 | 阳性对照 Positive control |
pGADT7-T+pGBKT7-LaminC | 阴性对照 Negative control |
pGADT7+pGBKT7-MLPK | 自激活检测 Self-activation detection |
pGADT7+pGBKT7-ARC1 | 自激活检测 Self-activation detection |
pGADT7+pGBKT7-SRK13-b-KD | 自激活检测 Self-activation detection |
pGADT7-FER-KD+pGBKT7-MLPK | 相互作用检测 Interaction detection |
pGADT7-FER-KD+pGBKT7-ARC1 | 相互作用检测 Interaction detection |
pGADT7-FER-KD+pGBKT7-SRK13-b-KD | 相互作用检测 Interaction detection |
1 | CHEUNG A Y, DUAN Q H, LI C,et al.Pollen-pistil interactions:It takes two to tangle but a molecular cast of many to deliver[J].Current Opinion in Plant Biology,2022,69:102279. |
2 | JOHNSON M A, HARPER J F, PALANIVELU R.A fruitful journey:pollen tube navigation from germination to fertilization[J].Annual Review of Plant Biology,2019,70:809-837. |
3 | ABHINANDAN K, SANKARANARAYANAN S, MACGREGOR S,et al.Cell-cell signaling during the Brassicaceae self-incompatibility response[J].Trends in Plant Science,2022,27(5):472-487. |
4 | SWANSON R, EDLUND A F, PREUSS D.Species specificity in pollen-pistil interactions[J].Annual Review of Genetics,2004,38:793-818. |
5 | DOUCET J, LEE H K, GORING D R.Pollen acceptance or rejection:a tale of two pathways[J].Trends in Plant Science,2016,21(12):1058-1067. |
6 | ZHANG L L, HUANG J B, SU S Q,et al.FERONIA receptor kinase-regulated reactive oxygen species mediate self-incompatibility in Brassica rapa [J].Current Biology,2021,31(14):3004-3016.e4. |
7 | JANY E, NELLES H, GORING D R.The molecular and cellular regulation of Brassicaceae self-incompatibility and self-pollen rejection[J].International Review of Cell and Molecular Biology,2019,343:1-35. |
8 | NASRALLAH J B.Self-incompatibility in the Brassicaceae:Regulation and mechanism of self-recognition[J].Current Topics in Developmental Biology,2019,131:435-452. |
9 | NASRALLAH J B.Evolution of the Brassica self-incompatibility locus:a look into S-locus gene polymorphisms[J].Proceedings of the National Academy of Sciences of the United States of America,1997,94(18):9516-9519. |
10 | TAKAYAMA S, ISOGAI A.Self-incompatibility in plants[J].Annual Review of Plant Biology,2005,56:467-489. |
11 | TAKAYAMA S, SHIMOSATO H, SHIBA H,et al.Direct ligand-receptor complex interaction controls Brassica self-incompatibility[J].Nature,2001,413(6855):534-538. |
12 | MURASE K, SHIBA H, IWANO M,et al.A membrane-anchored protein kinase involved in Brassica self-incompatibility signaling[J].Science,2004,303(5663):1516-1519. |
13 | KITASHIBA H, LIU P, NISHIO T,et al.Functional test of Brassica self-incompatibility modifiers in Arabidopsis thaliana [J].Proceedings of the National Academy of Sciences of the United States of America,2011,108(44):18173-18178. |
14 | GU T S, MAZZURCO M, SULAMAN W,et al.Binding of an arm repeat protein to the kinase domain of the S-locus receptor kinase[J].Proceedings of the National Academy of Sciences of the United States of America,1998,95(1):382-387. |
15 | SAMUEL M A, CHONG Y T, HAASEN K E,et al.Cellular pathways regulating responses to compatible and self-incompatible pollen in Brassica and Arabidopsis stigmas intersect at Exo70A1,a putative component of the exocyst complex[J].The Plant Cell,2009,21(9):2655-2671. |
16 | SANKARANARAYANAN S, JAMSHED M, SAMUEL M A.Degradation of glyoxalase I in Brassica napus stigma leads to self-incompatibility response[J].Nature Plants,2015,1:15185. |
17 | SCANDOLA S, SAMUEL M A.A flower-specific phospholipase D is a stigmatic compatibility factor targeted by the self-incompatibility response in Brassica napus [J].Current Biology,2019,29(3):506-512.e4. |
18 | LI H J, YANG W C.RLKs orchestrate the signaling in plant male-female interaction[J].Science China Life Sciences,2016,59(9):867-877. |
19 | ZHONG S, QU L J.Peptide/receptor-like kinase-mediated signaling involved in male-female interactions[J].Current Opinion in Plant Biology,2019,51:7-14. |
20 | YU Y Q, CHAKRAVORTY D, ASSMANN S M.The G protein β-subunit,AGB1,interacts with FERONIA in RALF1-regulated stomatal movement[J].Plant Physiology,2018,176(3):2426-2440. |
21 | FENG W, KITA D, PEAUCELLE A,et al.The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling[J].Current Biology,2018,28(5):666-675.e5. |
22 | CHEN J, YU F, LIU Y,et al.FERONIA interacts with ABI2-type phosphatases to facilitate signaling cross-talk between abscisic acid and RALF peptide in Arabidopsis [J].Proceedings of the National Academy of Sciences of the United States of America,2016,113(37):E5519-E5527. |
23 | YU F, QIAN L C, NIBAU C,et al.FERONIA receptor kinase pathway suppresses abscisic acid signaling in Arabidopsis by activating ABI2 phosphatase[J].Proceedings of the National Academy of Sciences of the United States of America,2012,109(36):14693-14698. |
24 | DUAN Q H, KITA D, LI C,et al.FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development[J].Proceedings of the National Academy of Sciences of the United States of America,2010,107(41):17821-17826. |
25 | DESLAURIERS S D, LARSEN P B.FERONIA is a key modulator of brassinosteroid and ethylene responsiveness in Arabidopsis hypocotyls[J].Molecular Plant,2010,3(3):626-640. |
26 | ESCOBAR-RESTREPO J M, HUCK N, KESSLER S,et al.The FERONIA receptor-like kinase mediates male-female interactions during pollen tube reception[J].Science,2007,317(5838):656-660. |
27 | GUO H Q, NOLAN T M, SONG G Y,et al.FERONIA receptor kinase contributes to plant immunity by suppressing jasmonic acid signaling in Arabidopsis thaliana [J].Current Biology,2018,28(20):3316-3324.e6. |
28 | LI C, WU H M, CHEUNG A Y.FERONIA and her pals:functions and mechanisms[J].Plant Physiology,2016,171(4):2379-2392. |
29 | ROTMAN N, ROZIER F, BOAVIDA L,et al.Female control of male gamete delivery during fertilization in Arabidopsis thaliana [J].Current Biology,2003,13(5):432-436. |
30 | HUCK N, MOORE J M, FEDERER M,et al.The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception[J].Development,2003,130(10):2149-2159. |
31 | LINDNER H, MÜLLER L M, BOISSON-DERNIER A,et al.CrRLK1L receptor-like kinases:not just another brick in the wall[J].Current Opinion in Plant Biology,2012,15(6):659-669. |
32 | TUNG C W, DWYER K G, NASRALLAH M E,et al.Genome-wide identification of genes expressed in Arabidopsis pistils specifically along the path of pollen tube growth[J].Plant Physiology,2005,138(2):977-989. |
33 | LIU C, SHEN L P, XIAO Y,et al.Pollen PCP-B peptides unlock a stigma peptide-receptor kinase gating mechanism for pollination[J].Science,2021,372(6538):171-175. |
34 | DUAN Q H, KITA D, JOHNSON E A,et al.Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis [J].Nature Communications,2014,5(1):3129. |
35 | DUAN Q H, LIU M C J, KITA D,et al.FERONIA controls pectin-and nitric oxide-mediated male-female interaction[J].Nature,2020,579(7800):561-566. |
36 | FRANKLIN-TONG N, BOSCH M.Plant biology:stigmatic ROS decide whether pollen is accepted or rejected[J].Current Biology,2021,31(14):R904-R906. |
37 | HUANG J B, YANG L, YANG L,et al.Stigma receptors control intraspecies and interspecies barriers in Brassicaceae[J].Nature,2023,614(7947):303-308. |
38 | 李阳,施亚坤,高士科,等.羽衣甘蓝类蛋白质二硫键异构酶PDIL1-2的基因克隆及蛋白表达分析[J].植物研究,2020,40(2):293-300. |
LI Y, SHI Y K, GAO S K,et al.Gene cloning and expression analysis of PDIL1-2 of ornamental kale (Brassica oleracea var.acephala)[J].Bulletin of Botanical Research,2020,40(2):293-300. | |
39 | 栗赫铭,秦洪涛,魏德强,等.羽衣甘蓝BoMAPK4原核表达、抗体制备及蛋白表达分析[J].植物研究,2022,42(4):584-591. |
LI H M, QIN H T, WEI D Q,et al.Prokaryotic expression,preparation polyclonal antibody and protein expression of BoMAPK4 of ornamental kale (Brassica oleracea var.acephala)[J].Bulletin of Botanical Research,2022,42(4):584-591. | |
40 | 李晗,李治龙,李晓屿,等.羽衣甘蓝不同组织及柱头发育实时荧光定量PCR内参基因的筛选[J].植物研究,2016,36(4):565-572. |
LI H, LI Z L, LI X Y,et al.Selection of reference genes for real-time fluorescence quantitative PCR in different tissues and stigma development from ornamental Kale[J].Bulletin of Botanical Research,2016,36(4):565-572. | |
41 | QIN H T, LI H, ABHINANDAN K,et al.Fatty acid biosynthesis pathways are downregulated during stigma development and are critical during self-Incompatible responses in ornamental kale[J].International Journal of Molecular Sciences,2022,23(21):13102. |
[1] | 黄安瀛, 夏德安, 张洋, 那冬晨, 燕青, 魏志刚. PtrWRKY51基因的克隆及抗旱表达特性分析[J]. 植物研究, 2022, 42(6): 1005-1013. |
[2] | 陈华峰, 代龙军, 刘明洋, 郭冰冰, 杨洪, 王立丰. 橡胶树胶乳高表达热激蛋白HbHSP90.4基因抗逆功能分析[J]. 植物研究, 2022, 42(6): 1023-1032. |
[3] | 刘明洋, 肖化兴, 王立丰, 梁晓宇, 张宇, 王萌. 橡胶树热激蛋白HbHSP90.8-1基因的克隆与功能分析[J]. 植物研究, 2022, 42(5): 811-820. |
[4] | 王宏鹏, 李一丹, 汪耀, 谭晓宇, 陈成彬, 张力鹏. 菊叶薯蓣DcPMK基因克隆及互作蛋白筛选[J]. 植物研究, 2022, 42(5): 855-865. |
[5] | 栗赫铭, 秦洪涛, 魏德强, 李旭, 蓝兴国. 羽衣甘蓝BoMAPK4原核表达、抗体制备及蛋白表达分析[J]. 植物研究, 2022, 42(4): 584-591. |
[6] | 杨宇宁, 董昊, 董实伟, 王乃锐, 宋跃, 张含国, 李淑娟. 长白落叶松转录因子LobHLH34克隆及表达分析[J]. 植物研究, 2022, 42(1): 112-120. |
[7] | 马霜, 王博雅, 曹颖, 胡尚连, 高志民. 毛竹扩展蛋白基因的鉴定及其表达分析[J]. 植物研究, 2022, 42(1): 29-38. |
[8] | 彭淑萍, 董诚明, 朱畇昊. 响应内生菌侵染的两个地黄茉莉酸合成关键基因的克隆与表达分析[J]. 植物研究, 2021, 41(2): 294-301. |
[9] | 王肖肖, 覃碧, 杨玉双, 聂秋海, 张继川, 刘实忠. 橡胶草E2泛素结合酶基因TkUBC2基因的克隆及其表达分析[J]. 植物研究, 2021, 41(1): 98-106. |
[10] | 王万奇, 齐婉竹, 赵秋爽, 曾栋, 刘轶, 付鹏跃, 曲冠证, 赵曦阳. 白桦BpJMJ18基因启动子克隆及表达分析[J]. 植物研究, 2020, 40(5): 751-759. |
[11] | 李阳, 施亚坤, 高士科, 李晓屿, 蓝兴国. 羽衣甘蓝类蛋白质二硫键异构酶PDIL1-2的基因克隆及蛋白表达分析[J]. 植物研究, 2020, 40(2): 293-300. |
[12] | 李爽, 熊樱, RALF M;ller-Xing, 邢倩. 转录因子WRKY6和PR1在拟南芥胁迫记忆中的表达模式[J]. 植物研究, 2019, 39(5): 752-759. |
[13] | 李新宇, 何利明, 詹亚光. 水曲柳FmWRKY44基因克隆及表达分析[J]. 植物研究, 2019, 39(4): 529-538. |
[14] | 白晓明, 董实伟, 杨宇宁, 宋跃, 张含国, 李淑娟. 长白落叶松过氧化氢酶LoCAT1基因克隆及表达分析[J]. 植物研究, 2019, 39(4): 539-546. |
[15] | 王晟宇, 张淇, 张正一, 胡晓晴, 田晶, 张勇, 刘雪梅. 白桦BpSPL2基因启动子的克隆及表达分析[J]. 植物研究, 2019, 39(1): 96-103. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||