植物研究 ›› 2024, Vol. 44 ›› Issue (2): 289-297.doi: 10.7525/j.issn.1673-5102.2024.02.014
• 生理与生态 • 上一篇
李乾林1,2, 郭明钢1,2, 李佳音1,2, 郭霞丽1,2(), 黄建国3, 陈林4, 李学斌4
收稿日期:
2023-08-03
出版日期:
2024-03-20
发布日期:
2024-03-11
通讯作者:
郭霞丽
E-mail:guoxl6666@hotmail.com
作者简介:
李乾林(1999—),女,硕士研究生,主要从事植物生理生态方面的研究。
基金资助:
Qianlin LI1,2, Minggang GUO1,2, Jiayin LI1,2, Xiali GUO1,2(), Jianguo HUANG3, Lin CHEN4, Xuebin LI4
Received:
2023-08-03
Online:
2024-03-20
Published:
2024-03-11
Contact:
Xiali GUO
E-mail:guoxl6666@hotmail.com
摘要:
了解我国干旱半干旱地区树木木质部生长动态及其与气候因子之间的关系,对于评估和预测气候变化背景下的森林生产力和固碳潜力十分重要。通过微树芯采样技术,在2个生长季(2019年和2020年)监测了宁夏六盘山自然保护区内4棵蒙古栎(Quercus mongolica)年内木质部生长动态,并采用混合线性模型分别探索温度和降水对其生长速率的影响。研究发现蒙古栎的年内木质部生长动态在2 个生长季内无显著差异(P>0.05),均于4月初开始生长,9月中下旬停止生长,生长季长度为(177±17) d(2019年)和(165±24) d(2020年)。混合线性模型结果显示,蒙古栎年内木质部的生长速率与采样前7、10、15天的最高、最低、平均温及总降水量均呈现显著正相关关系(P<0.01)。全球气候变化背景下,宁夏六盘山自然保护区蒙古栎年内木质部生长可能受益于未来增温湿润的气候条件。
中图分类号:
李乾林, 郭明钢, 李佳音, 郭霞丽, 黄建国, 陈林, 李学斌. 温度和降水对宁夏六盘山自然保护区蒙古栎年内木质部生长的影响[J]. 植物研究, 2024, 44(2): 289-297.
Qianlin LI, Minggang GUO, Jiayin LI, Xiali GUO, Jianguo HUANG, Lin CHEN, Xuebin LI. Effects of Temperature and Precipitation on Intra-Annual Xylem Growth of Quercus mongolica in Liupan Mountain Nature Reserve, China[J]. Bulletin of Botanical Research, 2024, 44(2): 289-297.
表2
2019和2020年蒙古栎年内木质部生长动态的拟合参数
年份 Year | 树木编号 Tree number | A | β | κ | R2 | 木质部生长 开始时间 Onset of xylem growth(DOY) | 木质部生长 结束时间 Cessation of xylem growth(DOY) | 生长季节长度 Duration/d | 最大生长速率 出现时间 Day of maximum growth rate(DOY) | 第一个导管 出现时间 Day of the first vessel appearance(DOY) | 第一个导管 成熟时间 Day of the first vessel lignification(DOY) |
---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 1 | 2 268.44 | 3.13 | 0.02 | 0.94 | 104 | 266 | 162 | 153 | 91 | 116 |
2 | 1 465.54 | 3.63 | 0.03 | 0.84 | 94 | 259 | 165 | 146 | 97 | 116 | |
3 | 1 494.05 | 2.77 | 0.02 | 0.98 | 88 | 289 | 201 | 170 | 100 | 116 | |
4 | 963.73 | 2.65 | 0.02 | 0.89 | 84 | 264 | 180 | 139 | 106 | 122 | |
2020 | 1 | 1 555.37 | 3.61 | 0.02 | 0.93 | 104 | 262 | 158 | 151 | 97 | 124 |
2 | 2 404.10 | 2.97 | 0.02 | 0.94 | 96 | 293 | 197 | 181 | 103 | 121 | |
3 | 904.05 | 4.04 | 0.03 | 0.92 | 101 | 247 | 146 | 134 | 97 | 121 | |
4 | 1 120.18 | 3.90 | 0.03 | 0.89 | 92 | 237 | 145 | 135 | 91 | 115 |
表3
2019与2020年蒙古栎木质部生长参数
监测年份 Year | 木质部生长 开始时间 Onset of xylem growth(DOY) | 木质部生长 结束时间 Cessation of xylem growth(DOY) | 生长季长度 Duration/d | 年生长量 Annual growth/μm | 最大生长速率 出现时间 Day of maximum growth rate(DOY) | 第一个导管 出现日期 Day of the first vessel appearance(DOY) | 第一个导管 木质化日期 Day of the first vessel lignification(DOY) |
---|---|---|---|---|---|---|---|
2019 | 92±8 | 269±13 | 177±18 | 1 547.9±538.6 | 152±13 | 99±6 | 118±3 |
2020 | 98±5 | 259±24 | 162±24 | 1 495.9±663.2 | 161±22 | 97±5 | 120±4 |
表4
气候因子对蒙古栎木质部生长速率的影响
气候因子 Climatic factors | 变量 Variables | 估计值 Estimate | 标准误差 standard error | t | P |
---|---|---|---|---|---|
温度 Temperature | 截距Intercept | -6.318 | 10.390 | -0.608 | 0.554 |
T7,max | 2.816 | 0.414 | 6.797 | 0.000 | |
截距Intercept | 4.314 | 8.902 | 0.485 | 0.642 | |
T7,mean | 3.046 | 0.412 | 7.386 | 0.000 | |
截距Intercept | 18.757 | 7.913 | 2.371 | 0.067 | |
T7,min | 2.917 | 0.392 | 7.450 | 0.000 | |
截距Intercept | -7.231 | 10.400 | -0.695 | 0.499 | |
T10,max | 2.872 | 0.423 | 6.792 | 0.000 | |
截距Intercept | 4.316 | 8.864 | 0.487 | 0.640 | |
T10,mean | 3.055 | 0.416 | 7.337 | 0.000 | |
截距Intercept | 19.161 | 7.863 | 2.437 | 0.063 | |
T10,min | 2.888 | 0.391 | 7.384 | 0.000 | |
截距Intercept | -11.761 | 10.267 | -1.146 | 0.272 | |
T15,max | 3.152 | 0.423 | 7.454 | 0.000 | |
截距Intercept | 3.704 | 8.771 | 0.422 | 0.685 | |
T15,mean | 3.134 | 0.412 | 7.598 | 0.000 | |
截距Intercept | 20.006 | 7.817 | 2.559 | 0.056 | |
T15,min | 2.844 | 0.385 | 7.382 | 0.000 | |
降水 Precipitation | 截距Intercept | 34.603 | 8.287 | 4.176 | 0.014 |
P7 | 0.313 | 0.091 | 3.429 | 0.000 | |
截距Intercept | 31.951 | 8.421 | 3.794 | 0.017 | |
P10 | 0.295 | 0.075 | 3.960 | 0.000 | |
截距Intercept | 30.258 | 8.510 | 3.556 | 0.019 | |
P15 | 0.226 | 0.056 | 4.044 | 0.000 |
1 | IPCC.Climate Change 2021:The physical science basis.contribution of working group Ⅰ to sixth assessment report of the intergovernmental panel on climate change[R].Cambridge:Cambridge University Press,2021. |
2 | SCHEFFERS B R, DE MEESTER L, BRIDGE T C L,et al.The broad footprint of climate change from genes to biomes to people[J].Science,2016,354(6313):aaf7671. |
3 | DINNENY J R, YANOFSKY M F.Vascular patterning:xylem or phloem?[J].Current Biology,2004,14(3):R112-R114. |
4 | RATHGEBER C B K, CUNY H E, FONTI P.Biological basis of tree-ring formation:a crash course[J].Frontiers in Plant Science,2016,7:734. |
5 | 牛豪阁.祁连山东部三种针叶树径向生长动态对气候的响应[D].兰州:兰州大学,2018. |
NIU H G.Intra-annual stem radial growth dynamics of threeconi ferous species in response to climate in the eastern Qilian Mountains[D].Lanzhou:Lanzhou University,2018. | |
6 | 王婕,余碧云,黄建国.鼎湖山锥栗木质部形成及其对气候的响应[J].热带亚热带植物学报,2020,28(5):445-454. |
WANG J, YU B Y, HUANG J G.Xylem formation and response to climate of Castanea henryi in Dinghushan Mountain[J].Journal of Tropical and Subtropical Botany,2020,28(5):445-454. | |
7 | 赵凡凡,叶茂,康利飞,等.基于微树芯的塔里木河下游胡杨年内径向生长动态研究[J].干旱区资源与环境,2021,35(12):156-162. |
ZHAO F F, YE M, KANG L F,et al.Research on intra-annual radial growth dynamics of Populus euphratica in lower reaches of Tarim River based on micro-tree core[J].Journal of Arid Land Resources and Environment,2021,35(12):156-162. | |
8 | 王玲玲,勾晓华,夏敬清,等.树木形成层活动及其影响因素研究进展[J].应用生态学报,2021,32(10):3761-3770. |
WANG L L, GOU X H, XIA J Q,et al.Research pogress on tree cambium activity and its influencing factors[J].Chinese Journal of Applied Ecology,2021,32(10):3761-3770. | |
9 | 韦小练,范泽鑫, KAEWMANO A,等.热带季节雨林多花白头树年内径向生长动态及其对环境因子的响应[J].应用生态学报,2021,32(10):3567-3575. |
WEL X L, FAN Z X, KAEWMANO A,et al.Intra-annual radial growth of Garuga floribunda in tropical seasonal rain forest and its response to environmental factors in Xishuangbanna,southwest China[J].Chinese Journal of Applied Ecology,2021,32(10):3567-3575. | |
10 | 于健,陈佳佳,孟盛旺,等.长白山群落交错带长白松和鱼鳞云杉径向生长对气候变暖的响应[J].应用生态学报,2021,32(1):46-56. |
YU J, CHEN J J, MENG S W,et al.Response of radial growth of Pinus sylvestriformis and Picea jezoensis to climate warming in the ecotone of Changbai Mountain,northeast China[J].Chinese Journal of Applied Ecology,2021,32(1):46-56. | |
11 | ROSSI S, ANFODILLO T, ČUFAR K,et al.Pattern of xylem phenology in conifers of cold ecosystems at the northern Hemisphere[J].Global Change Biology,2016,22(11):3804-3813. |
12 | CABON A, PETERS R L, FONTI P,et al.Temperature and water potential co-limit stem cambial activity along a steep elevational gradient[J].New Phytologist,2020,226(5):1325-1340. |
13 | LIANG H X, JIANG S W, MUHAMMAD A,et al.Radial growth response of Picea crassifolia to climatic conditions in a dryland forest ecosystem in northwest China[J].Forests,2021,12(10):1382. |
14 | 戴君虎,王红丽,王焕炯,等.六盘山景观格局及与主要气候因子的关系[J].地理研究,2013,32(12):2222-2232. |
DAL J H, WANG H L, WANG H J,et al.Studies on landscape pattern of Liupan Mountains and the relationship with main climate factors[J].Geographical Research,2013,32(12):2222-2232. | |
15 | LIU Z B, WANG Y H, TIAN A,et al.Intra-annual variation of stem radius of Larix principis-rupprechtii and its response to environmental factors in Liupan Mountains of northwest China[J].Forests,2017,8(10):382. |
16 | ROSSI S, ANFODILLO T, MENARDI R.Trephor:a new tool for sampling microcores from tree stems[J].Iawa Journal,2006,27(1):89-97. |
17 | ROSSI S, DESLAURIERS A, ANFODILLO T.Assessment of cambial activity and xylogenesis by microsampling tree species:an example at the Alpine timberline[J].Iawa Journal,2006,27(4):383-394. |
18 | DESLAURIERS A, MORIN H, BEGIN Y.Cellular phenology of annual ring formation of Abies balsamea in the Quebec boreal forest (Canada)[J].Canadian Journal of Forest Research,2003,33(2):190-200. |
19 | CAMARERO J J, GUERRERO-CAMPO J, GUTIÉR-REZ E.Tree-ring growth and structure of Pinus uncinata and Pinus sylvestris in the central Spanish Pyrenees[J].Arctic and Alpine Research,1998,30(1):1-10. |
20 | ROSSI S, DESLAURIERS A, MORIN H.Application of the Gompertz equation for the study of xylem cell development[J].Dendrochronologia,2003,21(1):33-39. |
21 | OBERHUBER W, GRUBER A, KOFLER W,et al.Radial stem growth in response to microclimate and soil moisture in a drought-prone mixed coniferous forest at an inner Alpine site[J].European Journal of Forest Research,2014,133(3):467-479. |
22 | CAMARERO J J, OLANO J M, PARRAS A.Plastic bimodal xylogenesis in conifers from continental Mediterranean climates[J].New Phytologist,2010,185(2):471-480. |
23 | TeamR Core.R:a language and environment for statistical computing[EB/OL].[2023-07-11].. |
24 | MOSER L, FONTI P, BÜNTGEN U,et al.Timing and duration of European larch growing season along altitudinal gradients in the Swiss Alps[J].Tree Physiology,2010,30(2):225-233. |
25 | LUPI C, MORIN H, DESLAURIERS A,et al.Xylem phenology and wood production:resolving the chicken-or-egg dilemma[J].Plant,Cell & Environment,2010,33(10):1721-1730. |
26 | ZHANG J Z, GOU X H, PEDERSON N,et al.Cambial phenology in Juniperus przewalskii along different altitudinal gradients in a cold and arid region[J].Tree Physiology,2018,38(6):840-852. |
27 | ROSSI S, DESLAURIERS A, GRIÇAR J,et al.Critical temperatures for xylogenesis in conifers of cold climates[J].Global Ecology and Biogeography,2008,17(6):696-707. |
28 | KEYIMU M, LI Z S, JIAO L,et al.Radial growth response of Quercus liaotungensis to climate change:a case study on the central Loess Plateau,China[J].Trees,2022,36(3):1811-1822. |
29 | LANG G A.Dormancy:a new universal terminology[J].Hortscience,1987,22(5):817-820. |
30 | FU Y S H, ZHAO H F, PIAO S L,et al.Declining global warming effects on the phenology of spring leaf unfolding[J].Nature,2015,526(7571):104-107. |
31 | PERRY T O.Dormancy of Trees in winter:photoperiod is only one of the variables which interact to control leaf fall and other dormancy phenomena[J].Science,1971,171(3966):29-36. |
32 | HUANG J G, MA Q Q, ROSSI S,et al.Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in northern hemisphere conifers[J].Proceedings of the National Academy of Sciences of the United States of America,2020,117(34):20645-20652. |
33 | HUANG J G, GUO X L, ROSSI S,et al.Intra-annual wood formation of subtropical Chinese red pine shows better growth in dry season than wet season[J].Tree Physiology,2018,38(8):1225-1236. |
34 | WANG W J, HUANG J G, JIANG S W,et al.Response of xylem formation of Larix sibirica to climate change along the southern Altai Mountains,central Asia[J].Dendrochronologia,2023,77:126049. |
35 | 李明明,李刚.贺兰山地区植被冠层物候与树干形成层物候的关系[J].应用生态学报,2021,32(2):495-502. |
LI M M, LI G.Relationship between phenology of vegetation canopy and phenology of tree cambium in Helan Mountains,China[J].Chinese Journal of Applied Ecology,2021,32(2):495-502. | |
36 | GAO J N, YANG B, HE M H,et al.Intra-annual stem radial increment patterns of Chinese pine,Helan Mountains,northern central China[J].Trees,2019,33:751-763. |
37 | REN P, ROSSI S, GRICAR J,et al.Is precipitation a trigger for the onset of xylogenesis in Juniperus przewalskii on the north-eastern Tibetan Plateau?[J].Annals of Botany,2015,115(4):629-639. |
38 | GRUBER A, ZIMMERMANN J, WIESER G,et al.Effects of climate variables on intra-annual stem radial increment in Pinus cembra (L.) along the alpine treeline ecotone[J].Annals of Forest Science,2009,66(5):503. |
39 | DESLAURIERS A, MORIN H, URBINATI C,et al.Daily weather response of balsam fir (Abies balsamea (L.) Mill.) stem radius increment from dendrometer analysis in the boreal forests of Québec (Canada)[J].Trees,2003,17(6):477-484. |
40 | BOURIAUD O, LEBAN J M, BERT D,et al.Intra-annual variations in climate influence growth and wood density of Norway spruce[J].Tree Physiology,2005,25(6):651-660. |
41 | JIANG Y, WANG B Q, DONG M Y,et al.Response of daily stem radial growth of Platycladus orientalis to environmental factors in a semi-arid area of north China[J].Trees,2015,29(1):87-96. |
42 | ZWEIFEL R, ZIMMERMANN L, ZEUGIN F,et al.Intra-annual radial growth and water relations of trees:implications towards a growth mechanism[J].Journal of Experimental Botany,2006,57(6):1445-1459. |
43 | ORIBE Y, FUNADA R, KUBO T.Relationships between cambial activity,cell differentiation and the localization of starch in storage tissues around the cambium in locally heated stems of Abies sachalinensis (Schmidt) Masters[J].Trees,2003,17(3):185-192. |
44 | RYAN D A J, ALLEN O B, MCLAUGHLIN D L,et al.Interpretation of sugar maple (Acersaccharum) ring chronologies from central and southern Ontario using a mixed linear model[J].Canadian Journal of Forest Research,1994,24(3):568-575. |
45 | STEPPE K, STERCK F, DESLAURIERS A.Diel growth dynamics in tree stems:linking anatomy and ecophysiology[J].Trends in Plant Science,2015,20(6):335-343. |
[1] | 付学鹏, 王乐, 温嘉乐, 杨开放, 杨晓杰. 不同品种吊兰根初生木质部原型的观察与比较[J]. 植物研究, 2021, 41(2): 199-204. |
[2] | 郭依萍, 刘佳欣, 于颖, 王超, 杨传平. 白桦BpNAC012基因调控白桦木质部发育表达谱分析[J]. 植物研究, 2021, 41(2): 251-261. |
[3] | 李想, 刘万生, 周玮, 陈福元, 穆立蔷. 蒙古栎次生林群落结构及优势种群点格局分析[J]. 植物研究, 2020, 40(6): 830-838. |
[4] | 梁昭, 魏凯璐, 杨冬梅, 彭国全. 水分浸泡过夜对刺槐枝条最大水分导度测定的影响及年龄差异[J]. 植物研究, 2020, 40(5): 706-717. |
[5] | 刘万生, 李想, 陈福元, 祝梦婷, 穆立蔷. 蒙古栎林种内和种间竞争研究[J]. 植物研究, 2020, 40(4): 552-558. |
[6] | 李娜, 慕小倩, 雷琼. 紫花曼陀罗幼苗中紫色异细胞分布特征及其形态建成影响条件的初步研究[J]. 植物研究, 2018, 38(4): 575-582. |
[7] | 达清璟, 陈学林, 马文兵, 张亥贤. 外源水杨酸对总状绿绒蒿种子萌发及生理特性的影响[J]. 植物研究, 2017, 37(6): 835-840. |
[8] | 舒文将, 柴胜丰, 黎兆海, 范进顺, 唐键民, 朱淑芳, 何志红. 不同光强对棱角山矾幼苗生长及光合特性的影响[J]. 植物研究, 2017, 37(4): 556-562. |
[9] | 李吉玫, 张毓涛, 李翔, 韩燕梁. 降水强度变化对天山云杉地表凋落物和细根分解的影响[J]. 植物研究, 2017, 37(3): 360-369. |
[10] | 李景浩, 李慧, 魏亚伟, 张淞著, 朱文旭, 邓继峰, 宋依璇, 周永斌. 樟子松、油松、蒙古栎水分利用效率种间变化及其对环境因子的响应差异[J]. 植物研究, 2016, 36(4): 581-587. |
[11] | 郭鲲1;刘瑞鹏1;张玲1,2;毛子军1*. 原始阔叶红松林下红松、蒙古栎混合凋落叶分解特征及相互作用研究[J]. 植物研究, 2015, 35(5): 716-723. |
[12] | 李雯;张程;王庆成;郝龙飞;刘爽. 指数施肥对白桦裸根苗生长动态、生物量分配及光合作用的影响[J]. 植物研究, 2015, 35(3): 391-396. |
[13] | 王秀伟;毛子军*. 兴安落叶松树干CO2各通量成分对树干呼吸的贡献及其主要影响因子[J]. 植物研究, 2014, 34(4): 452-457. |
[14] | 吕海亮;毛子军*;李娜. 干旱对红松和蒙古栎幼苗生长的影响及种间竞争[J]. 植物研究, 2014, 34(3): 364-371. |
[15] | 兰倩;史胜青;刘建锋;常二梅;邓楠;江泽平*. 海南省小叶买麻藤种子形态及营养成分研究[J]. 植物研究, 2013, 33(5): 616-622. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||