植物研究 ›› 2023, Vol. 43 ›› Issue (6): 835-845.doi: 10.7525/j.issn.1673-5102.2023.06.006
孙敏1, 杨红红1, 王安琪1, 张悦婧1, 达晓伟1, 张继1,2, 孙坤1, 吴建平1,2, 冯汉青1,2()
收稿日期:
2022-10-14
出版日期:
2023-11-20
发布日期:
2023-11-08
通讯作者:
冯汉青
E-mail:fenghanq@nwnu.edu.cn
作者简介:
孙敏(1996—),女,硕士研究生,主要从事中草药栽培研究。
基金资助:
Min SUN1, Honghong YANG1, Anqi WANG1, Yuejing ZHANG1, Xiaowei DA1, Ji ZHANG1,2, Kun SUN1, Jianping WU1,2, Hanqing FENG1,2()
Received:
2022-10-14
Online:
2023-11-20
Published:
2023-11-08
Contact:
Hanqing FENG
E-mail:fenghanq@nwnu.edu.cn
About author:
E-mail:fenghanq@nwnu.edu.cnSupported by:
摘要:
苜蓿(Medicago sativa)是重要的牧草类植物,为了在苜蓿中有效地实现外源基因的瞬时表达,该研究以绿色荧光蛋白(GFP)作为报告基因,以本氏烟草(Nicotiana benthamiana)作为对比,研究了2种不同的表达载体(非复制型载体和基于菜豆黄矮病毒的复制型载体)、2种不同类型的根癌农杆菌菌株(Agrobacterium tumefaciens)(LBA4404和EHA105)对苜蓿叶片瞬时表达水平的影响。结果表明,LBA4404与复制型载体的组合(re-vector/LBA4404)可在苜蓿叶片中有效地实现GFP的瞬时表达。进一步地,研究了re-vector/LBA4404的浓度和侵染后时间对苜蓿叶片瞬时表达的影响。观察显示,随着re-vector/LBA4404菌悬液浓度或侵染后时间的增加,GFP在苜蓿叶片中的瞬时表达水平呈现出先升后降的趋势。菌悬液浓度为1.0(OD600)时,GFP瞬时表达水平最高;侵染后时间为5~7 d时,GFP瞬时表达水平达到峰值。相较于本氏烟草叶片,在苜蓿叶片中实现最高水平的瞬时转化需要更高浓度的农杆菌和更长的侵染后孵育的时间。
中图分类号:
孙敏, 杨红红, 王安琪, 张悦婧, 达晓伟, 张继, 孙坤, 吴建平, 冯汉青. 不同载体和农杆菌对苜蓿瞬时表达影响的研究[J]. 植物研究, 2023, 43(6): 835-845.
Min SUN, Honghong YANG, Anqi WANG, Yuejing ZHANG, Xiaowei DA, Ji ZHANG, Kun SUN, Jianping WU, Hanqing FENG. Effects of Different Vectors and Agrobacteriumtumefaciens on Transient Expression of Alfalfa[J]. Bulletin of Botanical Research, 2023, 43(6): 835-845.
1 | CHEN Q, LAI H F, HURTADO J,et al.Agroinfiltration as an effective and scalable strategy of gene delivery for production of pharmaceutical proteins[J].Advanced Techniques in A Biology & Medicine,2013,1(1):103. |
2 | CHEN Q, LAI H F.Gene delivery into plant cells for recombinant protein production[J].BioMed Research International,2015,2015:932161. |
3 | PICARD K, LEE R, HELLENS R,et al.Transient gene expression in Medicago truncatula leaves via agroinfiltration[J].Methods in Molecular Biology,2013,1069:215-226. |
4 | HWANG H H, YU M, LAI E M. Agrobacterium-mediated plant transformation:biology and applications[J].The Arabidopsis Book,2017,15:e0186. |
5 | SHARMA A K, SHARMA M K.Plants as bioreactors:recent developments and emerging opportunities[J].Biotechnology Advances,2009,27(6):811-832. |
6 | BAI Y Q, YANG Q C, KANG J M,et al.Isolation and functional characterization of a Medicago sativa L.gene,MsLEA3-1[J].Molecular Biology Reports,2012,39(3):2883-2892. |
7 | BIAZZI E, NAZZICARI N, PECETTI L,et al.Genome-wide association mapping and genomic selection for alfalfa(Medicago sativa) forage quality traits[J].PLoS One,2017,12(1):e0169234. |
8 | SAHOO A, MANDAL A K, DWIVEDI K,et al.A cross talk between the immunization and edible vaccine:Current challenges and future prospects[J].Life Sciences,2020,261:118343. |
9 | TRINH T H, RATET P, KONDOROSI E,et al.Rapid and efficient transformation of diploid Medicago truncatula and Medicago sativa ssp. falcata lines improved in somatic embryogenesis[J].Plant Cell Reports,1998,17(5):345-355. |
10 | JIANG Q Z, FU C X, WANG Z Y.A unified Agrobacterium-mediated transformation protocol for alfalfa(Medicago sativa L.) and Medicago truncatula [J].Methods in Molecular Biology,2019,1864:153-163. |
11 | SAMAC D A, AUSTIN-PHILLIPS S.Alfalfa(Medicago sativa L.)[J].Methods in Molecular Biology,2006,343:301-312. |
12 | KAMATÉ K, RODRIGUEZ-LLORENTE I D, SCHOLTE M,et al.Transformation of floral organs with GFP in Medicago truncatula [J].Plant Cell Reports,2000,19(7):647-653. |
13 | CRANE C, DIXON R A, WANG Z Y. Medicago truncatula transformation using root explants[J].Methods in Molecular Biology,2006,343:137-142. |
14 | ZHANG H, HUANG Q M, SU J.Development of alfalfa(Medicago sativa L.) regeneration system and Agrobacterium-mediated genetic transformation[J].Agricultural Sciences in China,2010,9(2):170-178. |
15 | WANG Z, KE Q B, KIM M D,et al.Transgenic alfalfa plants expressing the sweetpotato Orange gene exhibit enhanced abiotic stress tolerance[J].PLoS One,2015,10(5):e0126050. |
16 | ULLAH A H J, SETHUMADHAVAN K, MULLANEY E J,et al.Cloned and expressed fungal phyA gene in alfalfa produces a stable phytase[J].Biochemical and Biophysical Research Communications,2002,290(4):1343-1348. |
17 | FU C X, HERNANDEZ T, ZHOU C E,et al.Alfalfa(Medicago sativa L.)[J].Methods in Molecular Biology,2015,1223:213-221. |
18 | LACROIX B, CITOVSKY V.Pathways of DNA transfer to plants from Agrobacterium tumefaciens and related bacterial species[J].Annual Review of Phytopathology,2019,57:231-251. |
19 | CHEN Q, HE J Y, PHOOLCHAROEN W,et al.Geminiviral vectors based on bean yellow dwarf virus for production of vaccine antigens and monoclonal antibodies in plants[J].Human Vaccines,2011,7(3):331-338. |
20 | ZUBAIR M, ZAIDI S S E A, SHAKIR S,et al.Multiple begomoviruses found associated with cotton leaf curl disease in Pakistan in early 1990 are back in cultivated cotton[J].Scientific Reports,2017,7(1):680. |
21 | RAIRDAN G J, MOFFETT P.Distinct domains in the ARC region of the potato resistance protein Rx mediate LRR binding and inhibition of activation[J].The Plant Cell,2006,18(8):2082-2093. |
22 | GALÁN-ÁVILA A, GRAMAZIO P,RON M,et al.A novel and rapid method for Agrobacterium-mediated production of stably transformed Cannabis sativa L.plants[J].Industrial Crops and Products,2021,170:113691. |
23 | CHINCINSKA I A.Leaf infiltration in plant science:old method,new possibilities[J].Plant Methods,2021,17(1):83. |
24 | DEGUCHI M, BOGUSH D, WEEDEN H,et al.Establishment and optimization of a hemp(Cannabis sativa L.) agroinfiltration system for gene expression and silencing studies[J].Scientific Reports,2020,10(1):3504. |
25 | BURMAN N, CHANDRAN D, KHURANA J P.A rapid and highly efficient method for transient gene expression in rice plants[J].Frontiers in Plant Science,2020,11:584011. |
26 | MOËNNE-LOCCOZ Y, MAVINGUI P, COMBES C,et al.Microorganisms and biotic interactions[J].Environmental Microbiology:Fundamentals and Applications,2014,395-444. |
27 | SIRIWAT W, KALAPANULAK S, SUKSANGPANOMRUNG M,et al.Unlocking conserved and diverged metabolic characteristics in cassava carbon assimilation via comparative genomics approach[J].Scientific Reports,2018,8(1):16593. |
28 | DIAMOS A G, MASON H S.Modifying the replication of geminiviral vectors reduces cell death and enhances expression of biopharmaceutical proteins in Nicotiana benthamiana leaves[J].Frontiers in Plant Science,2019,9:1974. |
29 | WANG D, KHURSHID M, SUN Z M,et al.Genetic engineering of alfalfa(Medicago sativa L.)[J].Protein And Peptide Letters,2016,23(5):495-502. |
30 | 吴艳菊,冷彦儒,景思荦,等.利用真空侵染法在紫花苜蓿中瞬时表达GUS基因[J].分子植物育种,2022,20(3):859-864. |
WU Y J, LENG Y R, JING S L,et al.Expression of GUS gene in Medicago sativa L.by vacuum infiltration[J].Molecular Plant Breeding,2022,20(3):859-864. |
[1] | 郝雪峰, 亢春霞, 裴雁曦, 金竹萍. 苜蓿体内H2S信号与Ca2+调节气孔运动的作用机制[J]. 植物研究, 2023, 43(2): 281-287. |
[2] | 罗萍, 张昊楠, 徐建民, 胡冰, 王晓萍, 李光友, 范春节. 发根农杆菌介导的尾巨桉遗传转化体系的建立[J]. 植物研究, 2022, 42(3): 512-520. |
[3] | 张悦婧, 李颖, 王娟娟, 庞海龙, 贾凌云, 冯汉青. 不同转化条件对3种农杆菌GFP基因在本氏烟草中瞬时表达的影响[J]. 植物研究, 2022, 42(1): 121-129. |
[4] | 吉仁花, 张文波, 林晓飞, 包颖亮, 特日格勒, 包会嘎, 白淑兰. 杂交构树UDP-葡萄糖脱氢酶基因编码蛋白的亚细胞定位及其启动子5'端缺失片段的功能分析[J]. 植物研究, 2020, 40(6): 932-942. |
[5] | 贾姗姗, 王燕燕, 于放. 超声辅助提高长春花毛状根诱导效率及转基因毛状根构建[J]. 植物研究, 2018, 38(4): 604-610. |
[6] | 杨艳芳, 武剑, 朱凯, 刘黎卿, 陈发棣, 喻德跃. 过量表达菊花DmDREBa基因提高转化烟草耐低温能力[J]. 植物研究, 2016, 36(5): 721-729. |
[7] | 李墨野, 王娜, 周宇, 普潇莹, 冯万举, 李开隆. 干旱胁迫条件下转LbDREB基因大青杨瞬时基因表达及生长、生理指标变异分析[J]. 植物研究, 2016, 36(3): 409-415. |
[8] | 陆玉建, 张韩杰, 韩文瑜, 沈志强. 农杆菌介导rd29A启动子驱动otsB基因转化紫茉莉的研究[J]. 植物研究, 2016, 36(3): 401-408. |
[9] | 王红波;李成;曹阳理惠;李晶*. CYP79F1基因对西兰花的遗传转化的研究[J]. 植物研究, 2014, 34(4): 516-523. |
[10] | 周祥明;;郝志愚;夏时云;王姝;宋建;陈受宜;刘仲齐. 根癌农杆菌介导合欢转TaNHX2基因体系的优化[J]. 植物研究, 2013, 33(2): 197-201. |
[11] | 于海娣;王慧梅;付玉杰*. 木豆毛状根的诱导及其培养条件的研究[J]. 植物研究, 2012, 32(4): 481-483. |
[12] | 姚庆荣;郭运玲;孔华;贺立卡;郭安平*. 影响根癌农杆菌介导的木薯遗传转化因素分析[J]. 植物研究, 2012, 32(2): 227-231. |
[13] | 沙琰琰;李晓莉;史团省*;张俊;王亚杰. 农杆菌介导蜡质基因WIN1转化烟草的初步研究[J]. 植物研究, 2011, 31(6): 702-707. |
[14] | 张桦;张富春*;张雨良;张博;陈全家. 新牧一号杂花苜蓿MvNHX1基因的表达分析和提高烟草耐盐性的研究[J]. 植物研究, 2011, 31(5): 550-557. |
[15] | 周小梅;许瑾;王慧;李君剑*. 中草药浸提物对农杆菌抑制和对黑麦草愈伤组织生长、分化影响[J]. 植物研究, 2010, 30(3): 365-368. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||