植物研究 ›› 2019, Vol. 39 ›› Issue (2): 267-275.doi: 10.7525/j.issn.1673-5102.2019.02.013
李枢航, 苗蕊, 常媛, 李俊男, 燕晓杰, 刘照莹, 张荣沭
收稿日期:
2018-09-20
出版日期:
2019-03-05
发布日期:
2019-03-20
通讯作者:
张荣沭
E-mail:zrs6504@sina.com
作者简介:
李枢航(1997-),女,本科生,主要从事园林植物种质资源及植物病害生物防治研究。
基金资助:
LI Shu-Hang, MIAO Rui, CHANG Yuan, LI Jun-Nan, YAN Xiao-Jie, LIU Zhao-Ying, ZHANG Rong-Shu
Received:
2018-09-20
Online:
2019-03-05
Published:
2019-03-20
Supported by:
摘要: PIN蛋白具有多个跨膜结构域,影响着高等植物生长素的外向运输和众多生长发育过程。木霉菌是能促进植物生长、提高其对多种病害防御作用的生防因子。研究木霉菌对木本植物山新杨生长素的极性分布的影响有重要意义。克隆了山新杨PodaPIN9基因,对其核酸和蛋白序列进行分析;同时,构建的进化树显示PodaPIN9与6个物种的9条PIN基因具有高度一致性(>80%)。qRT-PCR分析表明,PodaPIN9在山新杨茎尖、成熟叶和根中均有表达。在根中表达量极低;在茎尖和叶中的表达量极高,分别是根中的503和346倍。该基因受木霉影响在茎尖和叶中的表达量均显著下调;而根中的表达量显著上调,达到对照的32.01倍。并发现根际接种木霉48 h会使杨树茎尖、叶和根中生长素含量降低。说明木霉菌能影响杨树茎尖、叶和根中IAA水平及PodaPIN9的表达量。并且Pearson相关性分析表明在茎尖、叶和根中,PodaPIN9表达量与IAA水平具有不同的相关性。
中图分类号:
李枢航, 苗蕊, 常媛, 李俊男, 燕晓杰, 刘照莹, 张荣沭. 木霉诱导下山新杨PodaPIN9基因的组织表达调控[J]. 植物研究, 2019, 39(2): 267-275.
LI Shu-Hang, MIAO Rui, CHANG Yuan, LI Jun-Nan, YAN Xiao-Jie, LIU Zhao-Ying, ZHANG Rong-Shu. Differential Expression of PodaPIN9 Gene in Tissues of Populus davidiana×P.alba var. pyramidlis Induced by Trichoderma[J]. Bulletin of Botanical Research, 2019, 39(2): 267-275.
1. 何克军. 澳大利亚昆士兰州松树杂交育种和造林[J]. 广东林业科技,1996,12(3):34-38. He K J. Hybrid breeding and planting of exotic pine in Queensland[J]. Forestry Science and Technology of Guangdong Province,1996,12(3):34-38. 2. 湛江市林科所. 加勒比松与湿地松杂交育种试验[J]. 广东林业科技,1994(4):23-27. Zhanjiang Forestry Institute. Cross breeding experiment of Pinus caribaea Morelet and Pinus elliottii[J]. Forestry Science and Technology of Guandong Province,1994(4):23-27. 3. 沈熙环,黄永权. 广东省湿加松良种选育和推广进展[J]. 林业科技通讯,2008(1):74-75. Shen X H,Huang Y Q. Progress in breeding and extension of improved Pinus elliottii×P. caribaea varieties in Guangdong Province[J]. Forest Science and Technology,2008(1):74-75. 4. 万述伟,宋凤景,郝俊杰,等. 271份豌豆种质资源农艺性状遗传多样性分析[J]. 植物遗传资源学报,2017,18(1):10-18. Wan S W,Song F J,Hao J J,et al. Genetic Diversity of agronomic traits in 271 Pea germplasm resources[J]. Journal of Plant Genetic Resources,2017,18(1):10-18. 5. Shen Z. A study on the phenotypic genetic diversity of camellia germplasm resources in Macheng city[J]. Asian Agricultural Research,2017,9(4):77-80. 6. 蒋会兵,宋维希,矣兵,等. 云南茶树种质资源的表型遗传多样性[J]. 作物学报,2013,39(11):2000-2008. Jiang H B,Song W X,Yi B,et al. Genetic Diversity of tea germplasm resources in Yunnan province based on phenotypic characteristics[J]. Acta Agronomica Sinica,2013,39(11):2000-2008. 7. 王海岗,贾冠清,智慧,等. 谷子核心种质表型遗传多样性分析及综合评价[J]. 作物学报,2016,42(1):19-30. Wang H G,Jia G Q,Zhi H,et al. Phenotypic diversity evaluations of foxtail millet core collections[J]. Acta Agronomica Sinica,2016,42(1):19-30. 8. 代攀虹,孙君灵,何守朴,等. 陆地棉核心种质表型性状遗传多样性分析及综合评价[J]. 中国农业科学,2016,49(19):3694-3708. Dai P H,Sun J L,He S P,et al. Comprehensive evaluation and genetic diversity analysis of phenotypic traits of core collection in upland cotton[J]. Scientia Agricultura Sinica,2016,49(19):3694-3708. 9. Kisua J,Mwikamba K,Makobe M,et al. Genetic diversity of sweet and grain sorghum populations using phenotypic markers[J]. International Journal of Biosciences,2015,6(9):34-46. 10. 王黎明,焦少杰,姜艳喜,等. 不同来源甜高粱种质资源的表型遗传多样性分析[J]. 植物遗传资源学报,2014,15(2):411-416. Wang L M,Jiao S J,Jiang Y X,et al. Genetic diversity analysis on sweet sorghum germplasm resources of different origins based on agronomical traits[J]. Journal of Plant Genetic Resources,2014,15(2):411-416. 11. 徐斌,彭莉霞,杨会肖,等. 杜鹃红山茶叶片主要性状的遗传多样性分析[J]. 植物研究,2015,35(5):730-734. Xu B,Peng L X,Yang H X,et al. Genetic diversity analysis for leaf main traits of Camellia azalea[J]. Bulletin of Botanical Research,2015,35(5):730-734. 12. 李义良,赵奋成,林昌明,等. 湿地松、加勒比松人工林优树选择研究[J]. 广东林业科技,2015,31(6):29-34. Li Y L,Zhao F C,Lin C M,et al. Selection of superior trees of Pinus elliottii and P. caribaea in Plantation[J]. Guangdong Forestry Science and Technology,2015,31(6):29-34. 13. 林元震. R与ASReml-R统计学[M]. 北京:中国林业出版社,2017. Lin Y Z. R and ASReml-R statistics[M]. Beijing:China Forestry Publishing House,2017. 14. 卢纹岱. SPSS统计分析:4版[M]. 北京:电子工业出版社,2010. Lu W D. SPSS statistical analysis:4th ed[M]. Beijing:Publishing House of Electronics Industry,2010. 15. 张岩,王萍,赵清岩,等. 籽用南瓜种质资源农艺性状遗传多样性及亲缘关系研究[J]. 内蒙古农业大学学报,2010,31(4):34-39. Zhang Y,Wang P,Zhao Q Y,et al. Stuey of agronomic traits diversity and genetic relationship on germplasm resources of seed-used pumpkin[J]. Journal of Inner Mongolia Agricultural University,2010,31(4):34-39. 16. Campbell D R. Using phenotypic manipulations to study multivariate selection of floral trait associations[J]. Annals of Botany,2009,103(9):1557-1566. 17. 李斌,顾万春. 松属植物遗传多样性研究进展[J]. 遗传,2003,25(6):740-748. Li B,Gu W C. Review on genetic diversity in Pinus[J]. Heredity,2003,25(6):740-748. 18.1. 刘宇明,韩国辉,王晓冬,等. 山新杨嫩枝扦插繁殖技术的研究[J]. 吉林林业科技,2005,34(4):4-5,44. Liu Y M,Han G H,Wang X D,et al. Raising young plants by softwood cutting for Populus davidiana×bolleana[J]. Jilin Forestry Science and Technology,2005,34(4):4-5,44. 2. 刘文萍,韩玉琴,南相日,等. 山新杨组织培养快繁技术研究[J]. 中国农学通报,2005,21(2):101-102,121. Liu W P,Han Y Q,Nan X R,et al. Study on rapid multiplication techniques by tissue culture in Shanxinyang(Populus davidiana×P. bollena)[J]. Chinese Agricultural Science Bulletin,2005,21(2):101-102,121. 3. Monfil V O,Casas-Flores S. Molecular mechanisms of biocontrol in Trichoderma spp. and their applications in agriculture[M]. //Gupta V K,Schmoll M,Herrera-Estrella A,et al. Biotechnology and biology of trichoderma. Amsterdam:Elsevier B. V.,2014:429-453. 4. Joeniarti E,Ni'Matuzahroh,Kusriningrum. Tolerance of Trichoderma asperellum isolates to chemical fungicide and their antagonistic activity against Phytophthora infestans[J]. International Journal of Plant & Soil Science,2014,3(1):36-46. 5. Yedidia I,Shoresh M,Kerem Z,et al. Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum(T-203) and accumulation of phytoalexins[J]. Applied and Environmental Microbiology,2003,69(12):7343-7353. 6. Korolev N,David D R,Elad Y. The role of phytohormones in basal resistance and Trichoderma-induced systemic resistance to Botrytis cinerea in Arabidopsis thaliana[J]. Biocontrol,2008,53(4):667-683. 7. 丁懿,石彩娟,王万军. 水稻PIN家族的生物信息学分析[J]. 安徽农业科学,2012,40(27):13238-13242. Ding Y,Shi C J,Wang W J. Bioinformatics analysis of PIN-formed family in Oryza sativa[J]. Journal of Anhui Agricultural Sciences,2012,40(27):13238-13242. 8. 邹纯雪,门淑珍. 生长素的外输载体PIN蛋白家族研究进展[J]. 中国细胞生物学学报,2013,35(4):574-582. Zou C X,Men S Z. Research advances in auxin efflux carrier PIN proteins[J]. Chinese Journal of Cell Biology,2013,35(4):574-582. 9. Steinmann T,Geldner N,Grebe M,et al. Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF[J]. Science,1999,286(5438):316-318. 10. Forestan C,Farinati S,Varotto S. The maize PIN gene family of auxin transporters[J]. Frontiers in Plant Science,2012,3:16. 11. Pattison R J,Catalá C. Evaluating auxin distribution in tomato(Solanum lycopersicum) through an analysis of the PIN and AUX/LAX gene families[J]. The Plant Journal,2012,70(4):585-598. 12. Vanneste S,Friml J. Auxin:a trigger for change in plant development[J]. Cell,2009,136(6):1005-1016. 13. Chen R J,Hilson P,Sedbrook J,et al. The Arabidopsis thaliana AGRAVITROPIC1 gene encodes a component of the polar-auxin-transport efflux carrier[J]. Proceedings of the National Academy of Sciences of the United States of America,1998,95(25):15112-15117. 14. Ni W M,Chen X Y,Xu Z H,et al. Isolation and functional analysis of a Brassica juncea gene encoding a component of auxin efflux carrier[J]. Cell Research,2002,12(3-4):235-245. 15. Zhang R S,Wang Y C,Wang C,et al. Time-course analysis of levels of indole-3-acetic acid and expression of auxin-responsive GH3 genes in Betula platyphylla[J]. Plant Molecular Biology Reporter,2011,29(4):898-905. 16. Yao Z H,Baloch A M,Liu Z H,et al. Cloning and characterization of an AUX/IAA gene in Populus davidiana×P. alba var. Pyramidalis and the correlation between its time-course expression and the levels of indole-3-acetic in saplings inoculated with Trichoderma[J]. Pakistan Journal of Botany,2018,50(1):169-177. 17. Livak K J,Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method[J]. Methods,2001,25(4):402-408. 18. Dhonukshe P,Aniento F,Hwang I,et al. Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis[J]. Current Biology,2007,17(6):520-527. 19. Křeček P,Skůpa P,Libus J,et al. The PIN-FORMED(PIN) protein family of auxin transporters[J]. Genome Biology,2009,10(12):249-249. 20. 赵瑞瑞,申琳,生吉萍. 番茄PIN基因家族的生物信息学分析及其表达模式[J]. 食品科学,2017,38(4):1-5. Zhao R R,Shen L,Sheng J P. Bioinformatic analysis of the PIN gene family in tomato and its expression pattern[J]. Food Science,2017,38(4):1-5. 21. 周大喜. 生长素极性运输在水稻根发育中的作用及水稻PIN同源基因的克隆[D]. 上海:上海交通大学,2003. Zhou D X. Affection of auxin polar transport on rice root development and cloning of a PIN gene from rice[D]. Shanghai:Shanghai Jiaotong University,2003. 22. Carraro N,Tisdale-Orr T E,Clouse R M,et al. Diversification and expression of the PIN,AUX/LAX,and ABCB families of putative auxin transporters in Populus[J]. Frontiers in Plant Science,2012,3:17. 23. Nisar N,Cuttriss A J,Pogson B J,et al. The promoter of the Arabidopsis PIN6 auxin transporter enabled strong expression in the vasculature of roots,leaves,floral stems and reproductive organs[J]. Plant Signaling & Behavior,2014,9(1):e27898. 刘雨. 宁夏贺兰山杜松(Juniperus rigida)表型多样性与化感作用研究[D]. 杨凌:西北农林科技大学,2011. Liu Y. Phenotypic Diversity and allelopathic effects of Juniperus rigida in Helan mountain,Ningxia[D]. Yangling:Northwest A&F University,2011. 19. Kowalczyk J. Comparison of phenotypic and genetic selections in Scots pine(Pinus sylvestris L.) single tree plot half-sib progeny tests[J]. Dendrobiology,2005,53:45-56. 20. Hong Y P,Hipkins V D,Strauss S H. Chloroplast DNA diversity among trees,populations and species in the California closed-cone pines(Pinus radiata,Pinus muricata and Pinus attenuata)[J]. Genetics,1993,135(4):1187-1196. 21. KovačevićD,NikolićB,MladenovićDrinićS,et al. Genetic relationships among some Pinus,Picea and Abies species revealed by RAPD markers[J]. Genetika,2013,45(2):493-502. 22. 倪州献,白天道,蔡恒,等. 马尾松基因组SSR标记在松属其他树种中的通用性分析[J]. 分子植物育种,2015,13(12):2811-2817. Ni Z X,Bai T D,Cai H,et al. The transferability of Pinus massoniana SSR in other Pinus species[J]. Molecular Plant Breeding,2015,13(12):2811-2817. 23. 许玉兰,蔡年辉,陈诗,等. 云南松天然群体遗传变异与生态因子的相关性[J]. 生态学杂志,2016,35(7):1767-1775. Xu Y L,Cai N H,Chen S,et al. Relationships between the genetic diversity of Pinus yunnanensis Franch. Natural populations and ecological factors[J]. Chinese Journal of Ecology,2016,35(7):1767-1775. 24. 张悦,易雪梅,姬兰柱. 从松属相关物种筛选红松微卫星标记及其种群遗传多样性分析[J]. 生态学杂志,2013,32(9):2307-2313. Zhang Y,Yi X M,Ji L Z. Screening of Pinus koraiensis microsatellite makers from relative species of Pinus and analysis of population genetic diversity[J]. Chinese Journal of Ecology,2013,32(9):2307-2313. 25. 陈家媛,靖晶,高嵩,等. 草河口林场红松人工林遗传多样性的ISSR分析[J]. 植物研究,2009,29(5):633-636. Chen J Y,Jing J,Gao S,et al. Analysis of genetic diversity of Pinus koraiensis plantation in CaoHekou forest farm by ISSR marker[J]. Bulletin of Botanical Research,2009,29(5):633-636. 26. 钟岁英,赵奋成,王炳新,等. 湿加松无性系生长性状的遗传变异及选择效果研究初报[J]. 广东林业科技,2011,27(3):14-19. Zhong S Y,Zhao F C,Wang B X,et al. A primary study on the genetic variation and selection gain for growth traits of clones of Pinus elliottii var. elliottii×P. caribaea var. hondurensis[J]. Guangdong Forestry Science and Technology,2011,27(3):14-19. 27. 梁德洋,金允哲,赵光浩,等. 50个红松无性系生长与木材性状变异研究[J]. 北京林业大学学报,2016,38(6):51-59. Liang D Y,Jin Y Z,Zhao G H,et al. Variance analyses of growth and wood characteristics of 50 Pinus koraiensis clones[J]. Journal of Beijing Forestry University,2016,38(6):51-59. 28. 李义良,赵奋成,李宪政,等. 湿地松、加勒比松种质资源遗传多样性分析[J]. 广东林业科技,2014,30(6):9-14. Li Y L,Zhao F C,Li X Z,et al. Analysis of genetic diversity of Pinus elliottii and P. caribaea germplasm resources[J]. Guangdong Forestry Science and Technology,2014,30(6):9-14. 29. 王丽侠,程须珍,王素华,等. 中国绿豆核心种质资源在不同环境下的表型变异及生态适应性评价[J]. 作物学报,2014,40(4):739-744. Wang L X,Cheng X Z,Wang S H,et al. Adaptability and Phenotypic Variation of Agronomic Traits in mungbean core collection under different environments in China[J]. Acta Agronomica Sinica,2014,40(4):739-744. 30. 李义良,赵奋成,吴惠姗,等. 湿加松亲本间遗传距离与杂种优势的相关性分析[J]. 林业科学研究,2012,25(2):138-143. Li Y L,Zhao F C,Wu H S,et al. Relationship between growth traits heterosis and genetic distance among parents of Pinus elliottii×P. caribaea based on SSR molecular markers[J]. Forest Research,2012,25(2):138-143. |
[1] | 王春瑶, 雷晓锦, 刘中原. 逆境胁迫下山新杨PdbHMGs基因表达模式分析[J]. 植物研究, 2023, 43(6): 932-942. |
[2] | 孙乾, 吴宇航, 张雅譞, 曹竞丹, 石晶静, 王超. 山新杨LTP家族基因生物信息学及表达模式分析[J]. 植物研究, 2022, 42(2): 211-223. |
[3] | 张博超, 王佳琳, 殷缘, 车易达, 邓俊杰, 张荣沭. 山新杨PdPapWRKY51基因在胁迫条件下的组织表达模式[J]. 植物研究, 2021, 41(6): 911-920. |
[4] | 周晨晨, 李义良, 王哲, 赵奋成, 钟岁英, 林昌明, 谭志强, 李福明, 吴惠姗, 郭文冰, 廖仿炎, 王建革. 基于RNA-Seq技术的湿加松特定时期产脂差异基因筛选及表达分析[J]. 植物研究, 2021, 41(3): 419-428. |
[5] | 陈晨, 邢宝月, 边秀艳, 许思佳, 刘桂丰, 姜静. 转BpCUCt白桦生长特征及内源IAA含量的变化[J]. 植物研究, 2018, 38(4): 506-517. |
[6] | 刘照莹, 姜传英, 翟彤彤, 常媛, 姚志红, 刘志华, 张荣沭. 棘孢木霉组合应用对杨树生长和光合特性影响[J]. 植物研究, 2018, 38(1): 64-74. |
[7] | 杨柳, 王乐, 谢忠奎, 郭志鸿, 张玉宝. 内源IAA、GA3调控对百合试管苗生长的影响研究[J]. 植物研究, 2016, 36(5): 760-767. |
[8] | 任小龙1;詹亚光1,2;梁雪1;齐凤慧1,2*. 水曲柳花发育过程中AG、SOC1基因表达的qRT-PCR分析[J]. 植物研究, 2015, 35(4): 612-617. |
[9] | 吕曼曼1;刘志华2;王慧1;朱国栋1;杨兴堂1;张荣沭1*. 棘孢木霉对杨树苗栽培土理化性质及养分的影响[J]. 植物研究, 2015, 35(2): 289-296. |
[10] | 王娜;窦恺;王志英;张荣沭;王玉成;刘志华*. 山新杨组培苗生根移栽方法[J]. 植物研究, 2014, 34(3): 380-385. |
[11] | 胡尚连;贾举庆;陈红春;曹颖;孙霞;卢学琴;韩颖. GA3和IAA对慈竹木质素生物合成相关酶活性调控及与木质素含量和S/G的关系[J]. 植物研究, 2009, 29(5): 571-576. |
[12] | 胡尚连;贾举庆;曹颖;孙霞;卢学琴. GA3和IAA对慈竹综纤维和叶绿素含量动态积累的调控效应[J]. 植物研究, 2008, 28(6): 737-740. |
[13] | 张东向, 张崇浩, 梅玲, 李杰芬. 荷兰芹胚性愈伤组织诱导及胚状体发生与内源IAA和ABA关系的初步研究[J]. 植物研究, 2001, 21(1): 70-73. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||