Plant Diversity ›› 2025, Vol. 47 ›› Issue (06): 969-980.DOI: 10.1016/j.pld.2025.07.001
• Articles • Previous Articles Next Articles
Nipeng Qiana, Linxu Wanga, Gangdun Lia, Chunchao Donga, Zhenzhao Xua,b, Qijing Liua, Guang Zhouc
Received:2025-04-07
Revised:2025-07-08
Online:2026-01-13
Published:2026-01-13
Contact:
Qijing Liu,E-mail:liuqijing@bjfu.edu.cn
Supported by:Nipeng Qiana, Linxu Wanga, Gangdun Lia, Chunchao Donga, Zhenzhao Xua,b, Qijing Liua, Guang Zhouc
通讯作者:
Qijing Liu,E-mail:liuqijing@bjfu.edu.cn
作者简介:Nipeng Qian,E-mail:qnp401509470@bjfu.edu.cn;Linxu Wang,E-mail:825436230@qq.com;Gangdun Li,E-mail:lgd1718270627@163.com;Chunchao Dong,E-mail:1659519129@qq.com;Zhenzhao Xu,E-mail:xzz741432399@qq.com;Guang Zhou,E-mail:zhouguang910313@163.com
基金资助:Nipeng Qian, Linxu Wang, Gangdun Li, Chunchao Dong, Zhenzhao Xu, Qijing Liu, Guang Zhou. Climate warming shortens the time interval between stem-girth and wood biomass production in twelve temperate tree species[J]. Plant Diversity, 2025, 47(06): 969-980.
Nipeng Qian, Linxu Wang, Gangdun Li, Chunchao Dong, Zhenzhao Xu, Qijing Liu, Guang Zhou. Climate warming shortens the time interval between stem-girth and wood biomass production in twelve temperate tree species[J]. Plant Diversity, 2025, 47(06): 969-980.
| Anderegg, W.R., Trugman, A.T., Badgley, G., et al., 2020. Climate-driven risks to the climate mitigation potential of forests. Science, 368, eaaz7005. https://doi.org/10.1126/science.aaz700. Antonucci, S., Rossi, S., Deslauriers, A., et al., 2015. Synchronisms and correlations of spring phenology between apical and lateral meristems in two boreal conifers. Tree Physiol. 35(10), 1086-1094. https://doi.org/10.1093/treephys/tpv077. Balducci, L., Deslauriers, A., Giovannelli, A., 2013. Effects of temperature and water deficit on cambial activity and woody ring features in Picea mariana saplings. Tree Physiol. 33(10), 1006-1017. https://doi.org/10.1093/treephys/tpt073. Begum, S., Kudo, K., Rahman, M.H., et al., 2018. Climate change and the regulation of wood formation in trees by temperature. Trees, 32, 3-15. https://doi.org/10.1007/s00468-017-1587-6. Begum, S., Nakaba, S., Yamagishi, Y., et al., 2013. Regulation of cambial activity in relation to environmental conditions: understanding the role of temperature in wood formation of trees. Physiol. Plant. 147(1), 46-54. https://doi.org/10.1111/j.1399-3054.2012.01663.x. Ben-Gal, A., Kool, D., Agam, N., et al., 2010. Whole-tree water balance and indicators for short-term drought stress in non-bearing ‘Barnea’olives. Agric. Water Manag. 98(1), 124-133. https://doi.org/10.1016/j.agwat.2010.08.008. Bhalerao, R.P, Fischer, U. 2014. Auxin gradients across wood-instructive or incidental?. Physiol. Plant. 151(1), 43-51. https://doi.org/10.1111/ppl.12134. Blumstein, M., Oseguera, M., Caso-McHugh, T., et al., 2024. Nonstructural carbohydrate dynamics' relationship to leaf development under varying environments. New Phytol. 241(1), 102-113. https://doi.org/10.1111/nph.19333. Brackmann, K., Qi, J., Gebert, M., et al., 2018. Spatial specificity of auxin responses coordinates wood formation. Nat. commun. 9(1), 875. https://doi.org/10.1038/s41467-018-03256-2. Borges, E. R., Rejou-Mechain, M., Gourlet-Fleury, S., et al., 2024. Evolutionary diversity impacts tropical forest biomass and productivity through disturbance-mediated ecological pathways. J. Ecol. 112(10), 2344-2358. https://doi.org/10.1111/1365-2745.14399. Buonaiuto, D. M., Wolkovich, E. M., 2021. Differences between flower and leaf phenological responses to environmental variation drive shifts in spring phenological sequences of temperate woody plants. J. Ecol. 109 (8), 2922–2933. https://doi.org/10.1111/1365-2745.13708. Caffarra, A., Donnelly, A. 2011. The ecological significance of phenology in four different tree species: effects of light and temperature on bud burst. Int. J. Biometeorol. 55, 711-721. https://doi.org/10.1007/s00484-010-0386-1. Chen, L., Huang, J.G., Ma, Q., et al., 2019. Long-term changes in the impacts of global warming on leaf phenology of four temperate tree species. Glob. Change Biol. 25(3), 997-1004. https://doi.org/10.1111/gcb.14496. Chen, Y., Rademacher, T., Fonti, P., et al., 2022. Inter-annual and inter-species tree growth explained by phenology of xylogenesis. New Phytol. 235(3), 939-952. https://doi.org/10.1111/nph.18195. Chuine, I., Beaubien, E. G., 2001. Phenology is a major determinant of tree species range. Ecol. Lett. 4 (5), 500–510. https://doi.org/10.1046/j.1461-0248.2001.00261.x. Collins, C. G., Elmendorf, S. C., Hollister, R. D., et al., 2021. Experimental warming differentially affects vegetative and reproductive phenology of tundra plants. Nat 12 (1), 3442. https://doi.org/10.1038/s41467-021-23841-2. Cuny, H.E., Fonti, P., Rathgeber, C.B., et al., 2019. Couplings in cell differentiation kinetics mitigate air temperature influence on conifer wood anatomy. Plant Cell Environ. 42(4), 1222-1232. https://doi.org/10.1111/pce.13464. Cuny, H.E., Rathgeber, C.B., Frank, D., et al., 2015. Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nat. Plants 1(11), 1-6. https://doi.org/10.1038/nplants.2015.160. Deans, R.M., Brodribb, T.J., Busch, F.A., et al., 2019. Plant water-use strategy mediates stomatal effects on the light induction of photosynthesis. New Phytol. 222(1), 382-395. https://doi.org/10.1111/nph.15572. Delpierre, N., Vitasse, Y., Chuine, I., et al., 2016. Temperate and boreal forest tree phenology: from organ-scale processes to terrestrial ecosystem models. Ann. For. Sci. 73, 5-25. https://doi.org/10.1007/s13595-015-0477-6. Delpierre, N., Lireux, S., Hartig, F., et al., 2019. Chilling and forcing temperatures interact to predict the onset of wood formation in Northern Hemisphere conifers. Glob. Change Biol. 25(3), 1089-1105. (2019). https://doi.org/10.1111/gcb.14539. Dupont-Leduc, L., Power, H., Fortin, M., et al., 2024. Climate interacts with the trait structure of tree communities to influence forest productivity. J. Ecol. 112(8), 1758-1773. https://doi.org/10.1111/1365-2745.14350. Ding, J., Zhang, B., Li, Y., et al., 2021. Phytochrome B and PHYTOCHROME INTERACTING FACTOR8 modulate seasonal growth in trees. New Phytol 232 (6), 2339–2352. https://doi.org/10.1111/nph.17350. Dox, I., Marien, B., Zuccarini, P., et al., 2022. Wood growth phenology and its relationship with leaf phenology in deciduous forest trees of the temperate zone of Western Europe. Agric. For. Meteorol. 327, 109229. https://doi.org/10.1016/j.agrformet.2022.109229. Ettinger, A.K., Gee, S., Wolkovich, E.M. 2018. Phenological sequences: how early-season events define those that follow. Am. J. Bot. 105(10), 1771-1780. https://doi.org/10.1002/ajb2.1174. Etzold, S., Sterck, F., Bose, A. K., et al., 2022. Number of growth days and not length of the growth period determines radial stem growth of temperate trees. Ecol. Lett. 25(2), 427-439. https://doi.org/10.1111/ele.13933. Ford, K.R., Harrington, C.A., Bansal, S., et al., 2016. Will changes in phenology track climate change? A study of growth initiation timing in coast Douglas-fir. Glob. Change Biol. 22(11), 3712-3723. https://doi.org/10.1111/gcb.13328. Forrest, J., Miller-Rushing, A.J. 2010. Toward a synthetic understanding of the role of phenology in ecology and evolution. Philos. Trans. R. Soc. B: Biol. Sci. 365(1555), 3101-3112. https://doi.org/10.1098/rstb.2010.0145. Fu, Y.H., Piao, S., Delpierre, N., et al., 2018. Larger temperature response of autumn leaf senescence than spring leaf-out phenology. Glob. Change Biol. 24(5), 2159-2168. https://doi.org/10.1111/gcb.14021. Fu, Y.H., Zhao, H., Piao, S., et al., 2015. Declining global warming effects on the phenology of spring leaf unfolding. Nature, 526(7571), 104-107. doi.org/10.1038/nature15402. Fu, Y., Li, X., Zhou, X., et al., 2020. Progress in plant phenology modeling under global climate change. Sci. China Earth Sci. 63, 1237-1247. https://doi.org/10.1007/s11430-019-9622-2. Gao, S., Liang, E., Liu, R., et al., 2022. An earlier start of the thermal growing season enhances tree growth in cold humid areas but not in dry areas. Nat. Ecol. Evol. 6(4), 397-404. https://doi.org/10.1038/s41559-022-01668-4. Gennaretti, F., Ogee, J., Sainte-Marie, J., et al., 2020. Mining ecophysiological responses of European beech ecosystems to drought. Agric. For. Meteorol. 280, 107780. https://doi.org/10.1016/j.agrformet.2019.107780. Gricar, J., Jevsenak, J., Hafner, P., et al., 2022. Climatic regulation of leaf and cambial phenology in Quercus pubescens: their interlinkage and impact on xylem and phloem conduits. Sci. Total Environ. 802, 149968. https://doi.org/10.1016/j.scitotenv.2021.149968. Grossiord, C., Bachofen, C., Gisler, J., et al., 2022. Warming may extend tree growing seasons and compensate for reduced carbon uptake during dry periods. J. Ecol. 110(7), 1575-1589. https://doi.org/10.1111/1365-2745.13892. Hanninen, H. 2016. Boreal and temperate trees in a changing climate: modelling the ecophysiology of seasonality. Springer. Herrera-Ramirez, D., Hartmann, H., Romermann, C., et al., 2023. Anatomical distribution of starch in the stemwood influences carbon dynamics and suggests storage-growth trade-offs in some tropical trees. J. Ecol. 111(11), 2532-2548. https://doi.org/10.1111/1365-2745.14209. Huang, J.G., Deslauriers, A., Rossi, S. 2014. Xylem formation can be modeled statistically as a function of primary growth and cambium activity. New Phytol. 203(3), 831-841. https://doi.org/10.1111/nph.12859. Huang, J.G., Zhang, Y., Wang, M., et al., 2023. A critical thermal transition driving spring phenology of Northern Hemisphere conifers. Glob. Change Biol. 29(6), 1606-1617. https://doi.org/10.1111/gcb.16543. Huang, J.G., Ma, Q., Rossi, S., et al., 2020. Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proceedings of the National Acad. Sci. 117(34), 20645-20652. https://doi.org/10.1073/pnas.2007058117. Keen, R.M., Voelker, S.L., Wang, S.Y.S., et al., 2022. Changes in tree drought sensitivity provided early warning signals to the California drought and forest mortality event. Glob. Change Biol. 28(3), 1119-1132. https://doi.org/10.1111/gcb.15973. Kraus, C., Zang, C., Menze,l A. 2016. Elevational response in leaf and xylem phenology reveals different prolongation of growing period of common beech and Norway spruce under warming conditions in the Bavarian Alps. Eur. J. For. Res. 135, 1011-1023. https://doi.org/10.1007/s10342-016-0990-7. Lai, J., Zou, Y., Zhang, S., et al., 2022. glmm. hp: an R package for computing individual effect of predictors in generalized linear mixed models. J. Plant Ecol. 15(6), 1302-1307. https://doi.org/10.1093/jpe/rtac096. Lai, J.S., Tang, J., Li, T.Y., et al., 2024. Evaluating the relative importance of predictors in Generalized Additive Models using the gam.hp R package. Plant Divers. 46, 542-546. https://doi.org/10.1016/j.pld.2024.06.002. Lai, J.S., Zhu, W.J., Cui, D.F., et al., 2023. Extension of the glmm.hp package to zero-inflated generalized linear mixed models and multiple regression. J. Plant Ecol. 16, rtad038. https://doi.org/10.1093/jpe/rtad038. Li, X., Fan, R., Pan, X., et al., 2024. Climate warming advances phenological sequences of Aesculus hippocastanum. Agric. For. Meteorol. 349, 109958. doi:10.1016/j.agrformet.2024.109958. Li, X., Rossi, S., Sigdel, S.R., et al., 2021. Warming menaces high-altitude Himalayan birch forests: Evidence from cambial phenology and wood anatomy. Agric. For. Meteorol. 308-309, 108577. https://doi.org/10.1016/j.agrformet.2021.108577. Ma, Q., Huang, J.G., Hanninen, H., et al., 2018. Reduced geographical variability in spring phenology of temperate trees with recent warming. Agric. For. Meteorol. 256, 526-533. https://doi.org/10.1016/j.agrformet.2018.04.012. Ma, Q., Huang, J.G., Hanninen, H., et al., 2021. Climate warming prolongs the time interval between leaf-out and flowering in temperate trees: Effects of chilling, forcing and photoperiod. J. Ecol. 109(3), 1319-1330. https://doi.org/10.1111/1365-2745.13558. Ma, Q., Hanninen, H., Berninger, F., et al., 2022. Climate warming leads to advanced fruit development period of temperate woody species but divergent changes in its length. Glob. Change Biol. 28(20), 6021-6032. https://doi.org/10.1111/gcb.16357. Matula, R., Knirova, S., Vitamvas, J., et al., 2023. Shifts in intra-annual growth dynamics drive a decline in productivity of temperate trees in Central European forest under warmer climate. Sci. Total Environ. 905, 166906. https://doi.org/10.1016/j.scitotenv.2023.166906. McDowell, N., Pockman, W. T., Allen, C. D., et al., 2008. Mechanisms of plant survival and mortality during drought. why do some plants survive while others succumb to drought?. New Phytol. 178 (4), 719–739. https://doi.org/10.1111/j.1469-8137.2008.02436.x. Michelot, A., Simard, S., Rathgeber, C., et al., 2012. Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics. Tree physiol. 32(8), 1033-1045. https://doi.org/10.1093/treephys/tps052. Mu, W., Wu, X., Camarero, J. J., et al., 2023. Photoperiod drives cessation of wood formation in northern conifers. Glob. Ecol. Biogeogr. 32(4), 603-617. https://doi.org/10.1111/geb.13647. Muffler, L., Weigel, R., Beil, I., et al., 2024. Winter and spring frost events delay leaf-out, hamper growth and increase mortality in European beech seedlings, with weaker effects of subsequent frosts. Ecol. Evol. 14(7), e70028. https://doi.org/10.1002/ece3.70028. Petit, G., Von Arx, G., Kiorapostolou, N., et al., 2018. Tree differences in primary and secondary growth drive convergent scaling in leaf area to sapwood area across Europe. New Phytol. 218(4), 1383-1392. https://doi.org/10.1111/nph.15118. Piao, S., Liu, Q., Chen, A., et al., 2019. Plant phenology and global climate change: Current progresses and challenges. Glob. Change Biol. 25(6), 1922-1940. https://doi.org/10.1111/gcb.14619. Post, E. S., Pedersen, C., Wilmers, C. C., et al., 2008. Phenological sequences reveal aggregate life history response to climatic warming. Ecology 89 (2), 363–370. https://doi.org/10.1890/06-2138.1. Pugnaire, F. I., Armas, C., Maestre, F. T., 2011. Positive plant interactions in the Iberian Southeast: mechanisms, environmental gradients, and ecosystem function. J. Arid Environ. 75 (12), 1310–1320. https://doi.org/10.1016/j.jaridenv.2011.01.016. Qian, N., Gao, H., Xu, Z., et al., 2023. Cambial phenology and wood formation of Korean pine in response to climate change in Changbai Mountain, Northeast China. Dendrol. 77, 126045. https://doi.org/10.1016/j.dendro.2022.126045. Qian, N., Xu, Z., Gao, H., et al., 2024. Linkages between intra-annual radial growth and photosynthetic production of four main species in a temperate forest in northeast China. Agric. For. Meteorol. 345, 109866. https://doi.org/10.1016/j.agrformet.2023.109866. Qian, N., Xu, Z., Song, C., et al., 2024. Comparing the intra-annual radial growth of three temperate species as related to leaf phenology. Eur. J. For. Res. 143(6), 1657-1666. https://doi.org/10.1007/s10342-024-01718-5. Ren, P., Rossi, S., Gricar, J., et al., 2015. Is precipitation a trigger for the onset of xylogenesis in Juniperus przewalskii on the north-eastern Tibetan Plateau?. Ann. Bot. 115(4), 629-639. https://doi.org/10.1093/aob/mcu259. Rossi, S., Deslauriers, A., Anfodillo, T., et al., 2007. Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152 (1), 1–12. https://doi.org/10.1007/s00442-006-0625-7. Rossi, S., Morin, H., Deslauriers, A., et al., 2011. Predicting xylem phenology in black spruce under climate warming. Glob. Change Biol. 17(1), 614-625. https://doi.org/10.1111/j.1365-2486.2010.02191.x. Richardson, A. D., Hufkens, K., Milliman, T., et al., 2018. Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature 560 (7718), 368–371. https://doi.org/10.1038/s41586-018-0399-1. Rossi, S., Anfodillo, T., Cufar, K., et al., 2016. Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere. Glob. Change Biol. 22(11), 3804-3813. https://doi.org/10.1111/gcb.13317. Seddon, A.W.R., Macias-Fauria, M., Long, P.R., et al., 2016. Sensitivity of global terrestrial ecosystems to climate variability. Nature. 531(7593), 229-232. https://doi.org/10.1038/nature16986. Singh, R.K., Svystun, T., AlDahmash, B., et al., 2017. Photoperiod-and temperature-mediated control of phenology in trees-a molecular perspective. New Phytol. 213(2), 511-524. https://doi.org/10.1111/nph.14346. Stinziano, J.R., Way, D.A. 2017. Autumn photosynthetic decline and growth cessation in seedlings of white spruce are decoupled under warming and photoperiod manipulations. Plant Cell Environ. 40(8), 1296-1316. https://doi.org/10.1111/pce.12917. Turcotte, A., Morin, H., Krause, C., et al., 2009. The timing of spring rehydration and its relation with the onset of wood formation in black spruce. Agric. For. Meteorol. 149(9), 1403-1409. https://doi:10.1016/j.agrformet.2009.03.010. van der Maaten, E., Pape, J., van der Maaten-Theunissen, M., et al., 2018. Distinct growth phenology but similar daily stem dynamics in three co-occurring broadleaved tree species. Tree physiol. 38(12), 1820-1828. https://doi.org/10.1093/treephys/tpy042. Vitasse, Y., Signarbieux, C., Fu, Y.H. 2018. Global warming leads to more uniform spring phenology across elevations. Proc. Natl. Acad. Sci. 115(5), 1004-1008. https://doi.org/10.1073/pnas.1717342115. Way, D.A, Montgomery, R.A. 2015. Photoperiod constraints on tree phenology, performance and migration in a warming world. Plant Cell Environ. 38(9), 1725-1736. https://doi.org/10.1111/pce.12431. Xu, Z., Liu, Q., Du, W., et al., 2021. Modelling leaf phenology of some trees with accumulated temperature in a temperate forest in northeast China. For. Ecol. Manag. 489, 119085. https://doi.org/10.1016/j.foreco.2021.119085. Xu, Z., Qin, L., Zhou, G., et al., 2024. Exploring carbon sequestration in broad-leaved Korean pine forests: Insights into photosynthetic and respiratory processes. Sci. Total Environ. 906, 167421. https://doi.org//10.1016/j.scitotenv.2023.167421. Zhao, W., Liu, L., Shen, Q., et al., 2020. Effects of water stress on photosynthesis, yield, and water use efficiency in winter wheat. Water, 12(8), 2127. https://doi.org/10.3390/w12082127. Ziaco, E., Truettner, C., Biondi, F., 2018. Moisture-driven xylogenesis in Pinus ponderosa from a Mojave Desert mountain reveals high phenological plasticity. Plant Cell Environ. 41(4), 823-836. https://doi.org/10.1111/pce.13152. |
| [1] | Gang Feng, Ying-Jie Xiong, Hua-Yu Wei, Yao Li, Ling-Feng Mao. Endemic medicinal plant distribution correlated with stable climate, precipitation, and cultural diversity [J]. Plant Diversity, 2023, 45(04): 479-484. |
| [2] | Fei-Hong Yan, Li-Ping Zhang, Fang Cheng, Dong-Mei Yu, Jin-Yong Hu. Accession-specific flowering time variation in response to nitrate fluctuation in Arabidopsis thaliana [J]. Plant Diversity, 2021, 43(01): 78-85. |
| [3] | Wen-Yun Chen, Tao Su. Asian monsoon shaped the pattern of woody dicotyledon richness in humid regions of China [J]. Plant Diversity, 2020, 42(03): 148-154. |
| [4] | SHI Zong-Ming-, SUN Wei-Bang. On the Suitable Regions for Olive (Olea europaea) Growing in China [J]. Plant Diversity, 2011, 33(5): 571-579. |
| [5] | PENG Hai-Feng , WAN Bang-Hui , ZHANG Gui-Quan , LU Yan-Peng. Microstructure Observations of Pollenless Abortion in Thermoand Photoperiod-sensitive Genic Male Sterile Line N28S in Rice ( Oryza sativa) [J]. Plant Diversity, 2009, 31(1): 15-20. |
| [6] | XU Ping-Zhen , , LIU Tao , , YANG Ying , , HU Yun-Qian *. The Role of Abscisic Acid in Plant Flowering [J]. Plant Diversity, 2007, 29(02): 215-222. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
