Plant Diversity ›› 2025, Vol. 47 ›› Issue (06): 852-865.DOI: 10.1016/j.pld.2025.10.007
Previous Articles Next Articles
Yang Yanga,b, Jianguo Chena,b, Bo Songa,b, Yazhou Zhangb, Yang Niua,b, Zihan Jianga,b, Hang Sunb
Received:2024-12-04
Revised:2025-10-31
Online:2026-01-13
Published:2026-01-13
Contact:
Hang Sun,E-mail:sunhang@mail.kib.ac.cn
Supported by:Yang Yanga,b, Jianguo Chena,b, Bo Songa,b, Yazhou Zhangb, Yang Niua,b, Zihan Jianga,b, Hang Sunb
通讯作者:
Hang Sun,E-mail:sunhang@mail.kib.ac.cn
基金资助:Yang Yang, Jianguo Chen, Bo Song, Yazhou Zhang, Yang Niu, Zihan Jiang, Hang Sun. The Qinghai-Tibet Plateau: Climate change, human activity, and plant diversity[J]. Plant Diversity, 2025, 47(06): 852-865.
Yang Yang, Jianguo Chen, Bo Song, Yazhou Zhang, Yang Niu, Zihan Jiang, Hang Sun. The Qinghai-Tibet Plateau: Climate change, human activity, and plant diversity[J]. Plant Diversity, 2025, 47(06): 852-865.
| Aerts, R., Cornelissen, J.H.C., Dorrepaal, E., 2006. Plant performance in a warmer world: general responses of plants from cold, northern biomes and the importance of winter and spring events. Plant Ecol. 182, 63-77. An, Y.M., 2021. Effects of Experimental Warming on Reproductive Characteristics of Typical Forb Species in Alpine Meadow of Qinghai-Tibet Plateau. Henan Normal University. Ph.D. thesis. Anderson, K., Fawcett, D., Cugulliere, A., et al., 2020. Vegetation expansion in the subnival Hindu Kush Himalaya. Glob. Chang Biol. 26, 1608-1625. Badano, E.I., Jones, C.G., Cavieres, L.A., et al., 2006. Assessing impacts of ecosystem engineers on community organization: a general approach illustrated by effects of a high-Andean cushion plant. Oikos 115, 369-385. Badano, E.I., Marquet, P.A., 2008. Ecosystem engineering affects ecosystem functioning in high-Andean landscapes. Oecologia 155, 821-829. Baker, B.B., Moseley, R.K., 2007. Advancing treeline and retreating glaciers: implications for conservation in Yunnan, P.R. China. Arct. Antarct. Alp. Res. 39, 200-209. Bao, Z.Y., Zhang, J.Y., Lian, Y.Q., et al., 2024. Changes in headwater streamflow from impacts of climate change in the Tibetan Plateau. Engineering 34, 133-142. Benedict, J.B., 1989. Use of Silene acaulis for dating: the relationship of cushion diameter to age. Arct. Alp. Res. 21, 91-96. Beniston, M., Stoffel, M., 2013. Assessing the impacts of climatic change on mountain water resources. Sci. Total Environ. 493, 1129-1137. Bertrand, R., Lenoir, J., Piedallu, C., et al., 2011. Changes in plant community composition lag behind climate warming in lowland forests. Nature 479, 517-520. Boucher, F.C., Lavergne, S., Basile, M., et al., 2016. Evolution and biogeography of the cushion life form in angiosperms. Perspect. Plant Ecol. Evol. Syst. 20, 22-31. Butterfield, B.J., Cavieres, L.A., Callaway, R.M., et al., 2013. Alpine cushion plants inhibit the loss of phylogenetic diversity in severe environments. Ecol. Lett. 16, 478-486. Calinger, K.M., 2015. A functional group analysis of change in the abundance and distribution of 207 plant species across 115 years in north-central North America. Biodivers. Conserv. 24, 2439-2457. Callaway, R.M., 2007. Positive interactions and interdependence in plant communities. Springer, Dordrecht. Callaway, R.M., Ridenour, W.M., 2004. Novel weapons: invasive success and the evolution of increased competitive ability. Front. Ecol. Environ. 2, 436-443. Cao, S.Z., 2018. Response of Seedling Emergence, Plant Growth and Reproduction to Warming in Alpine Meadow on Tibet Plateau. Lanzhou University. Ph.D. thesis. Carey, M.P., Sanderson, B.L., Barnas, K.A., et al., 2012. Native invaders - challenges for science, management, policy, and society. Front. Ecol. Environ. 10, 373-381. Cavieres, L.A., Badano, E.I., 2009. Do facilitative interactions increase species richness at the entire community level? J. Ecol. 97, 1181-1191. Chang, S., Chen, J.G., Su, J.Q., et al., 2018. Seasonal comparison of bacterial communities in rhizosphere of alpine cushion plants in the Himalayan Hengduan Mountains. Plant Divers. 40, 209-216. Chang, W., 2022. An ecological study of the plateau medicinal plant Nardostachys Jatamansi. Chongqing University. Ph.D. thesis. Charles, H., Dukes, J.S., 2008. Impacts of invasive species on ecosystem services. In: Nentwig W ed. Biological Invasions. Ecological Studies (Analysis and Synthesis). Springer, Berlin, Germany. Chen, A.P., Huang, L., Liu, Q., et al., 2021a. Optimal temperature of vegetation productivity and its linkage with climate and elevation on the Tibetan Plateau. Glob. Chang Biol. 27, 1942-1951. Chen, F., Fu, B., Xia, J., et al., 2019a. Major advances in studies of the phygsical geography and living environment of China during the past 70 years and future prospects. Sci. China Earth Sci. 62, 1665-1701. Chen, I.C., Hill, J.K., Ohlemuller, R., et al., 2011a. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024-1026. Chen, J.G., Yang, Y., Sun, H., 2011b. Advances in the Studies of Responses of Alpine Plants to Global Warming. Chin. J. Appl. Environ. Biol. 17, 435-446. Chen, J. G., Luo, Y.Q., Chen, Y.X., et al., 2020a. Plants with lengthened phenophases increase their dominance under warming in an alpine plant community. Sci. Total Environ. 728, 138891. Chen, J.G., Chen, X.F., Qian, L.S., et al., 2024a. Degeneration of foundation cushion species induced by ecological constraints can cause massive changes in alpine plant communities. Sci. China Life Sci. 67, 789-802. Chen, J.G., He, X.F., Wang, S.W., et al., 2019b. Cushion and shrub ecosystem engineers contribute differently to diversity and functions in alpine ecosystems. J. Veg. Sci. 30, 362-374. Chen, J.G., Li, Y.B., Yang, Y., et al., 2017a. How cushion communities are maintained in alpine ecosystems: a review and case study on alpine cushion plant reproduction. Plant Divers. 39, 221-228. Chen, J.G., Schob, C., Zhou, Z., et al., 2015a. Cushion plants can have a positive effect on diversity at high elevations in the Himalayan Hengduan Mountains. J. Veg. Sci. 26, 768-777. Chen, J.G., Yang, Y., Stocklin, J., et al., 2015b. Soil nutrient availability determines the facilitative effects of cushion plants on other plant species at high elevations in the south-eastern Himalayas. Plant Ecol. Divers. 8, 199-210. Chen, J.G., Yang, Y., Wang, S.W., et al., 2020b. Recruitment of the high elevation cushion plant Arenaria polytrichoides is limited by competition, thus threatened by currently established vegetation. J. Syst. Evol. 58, 59-68. Chen, J.G., Yang, Y., Wang, S.W., et al., 2020c. Shrub facilitation promotes selective tree establishment beyond the climatic treeline. Sci. Total Environ. 708, 134618. Chen, J.G., Zhang, Y.Z., Zhang, H.R., et al., 2021b. The positive effects of the alpine cushion plant Arenaria polytrichoides on insect dynamics are determined by both physical and biotic factors. Sci. Total Environ. 762, 143091. Chen, K.Y., Wang, B., Chen, C., et al., 2022. MaxEnt modeling to predict the current and future distribution of Pomatosace filicula under climate change scenarios on the Qinghai-Tibet Plateau. Plants 11, 670. Chen, L.X., Chen, Z.S., Jia, G.D., et al., 2020d. Influences of forest cover on soil freeze-thaw dynamics and greenhouse gas emissions through the regulation of snow regimes: a comparison study of the farmland and forest plantation. Sci. Total Environ. 726, 138403. Chen, T.T., Peng, L., Liu, S.Q., et al., 2017b. Spatio-temporal pattern of net primary productivity in Hengduan Mountains area, China: impacts of climate change and human activities. Chin. Geogr. Sci. 27, 948-962. Chen, X.F., Qian, L.S., Shi, H.H., et al., 2024b. Allelopathic potentials of surrounding vegetation on seedling establishment of alpine cushion Arenaria polytrichoides. J. Plant Ecol. 17, rtae026. Chen, X.F., Qian, L.S., Zhang, Y., et al., 2021c. Alpine community recruitment potential is determined by habitat attributes in the alpine ecosystems of the Himalaya-Hengduan Mountains, SW China. Ecol. Evol. 11, 17397-17408. Cleland, E.E., Chiariello, N.R., Loarie, S.R., et al., 2006. Diverse responses of phenology to global changes in a grassland ecosystem. Proc. Natl. Acad. Sci. U.S.A. 103, 13740-13744. Cooper, D.J., 1986. White spruce above and beyond treeline in the Arrigetch Peaks region, Brooks Range. Arct. Antarct. Alp. Res. 39, 247-252. Cowles, J.M., Wragg, P.D., Wright, A.J., et al., 2016. Shifting grassland plant community structure drives positive interactive effects of warming and diversity on aboveground net primary productivity. Glob. Chang Biol. 22, 741-749. Cranston, B.H., Monks, A., Whigham, P.A., et al., 2015. Variation and response to experimental warming in a New Zealand cushion plant species. Austral. Ecol. 40, 642-650. Cun, S., Zhang, C., Chen, J.Q., et al., 2024. Effects of UV-B radiation on pollen germination and tube growth: a global meta-analysis. Sci. Total Environ. 915, 170097. Darimont, C.T., Carlson, S.M., Kinnison, M.T., et al., 2009. Human predators outpace other agents of trait change in the wild. Proc. Natl. Acad. Sci. U.S.A. 106, 952-954. Dorji, T., Totland, O., Moe, S.R., et al., 2013. Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet. Glob. Chang Biol. 19, 459-472. Dunne, J.A., Harte, J., Taylor, K.J., 2003. Subalpine meadow flowering phenology responses to climate change: integrating experimental and gradient methods. Ecol. Monogr. 73, 69-86. Eckert, C.G., Kalisz, S., Geber, M.A., et al., 2010. Plant mating systems in a changing world. Trends Ecol. Evol. 25, 35-43. Ehlers, B.K., Berg, M.P., Staudt, M., et al., 2020. Plant secondary compounds in soil and their role in belowground species interactions. Trends Ecol. Evol. 35, 716-730. Elsen, P.R., Tingley, M.W., 2015. Global mountain topography and the fate of montane species under climate change. Nat. Clim. Change 5, 772-776. Esper, J., Bosshard, A., Schweingruber, F.H., et al., 1995. Tree-rings from the upper timberline in the Karakorum as climatic indicators for the last 1000 years. Dendrochronologia 13, 79-88. Etterson, J.R., Mazer, S.J., 2016. How climate change affects plants' sex lives. Science 353, 32-33. Filippa, G., Cremonese, E., Galvagno, M., et al., 2019. Climatic drivers of greening trends in the Alps. Remote Sens. 11, 2527. Freeman, B.G., Scholer, M.N., Ruiz-Gutierrez, V., et al., 2018. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl. Acad. Sci. U.S.A. 115, 11982-11987. Gaira, K.S., Dhar, U., Belwal, O.K., 2011. Potential of herbarium records to sequence phenological pattern: a case study of Aconitum heterophyllum in the Himalaya. Biodivers. Conserv. 20, 2201-2210. Gao, G.F., Li, H., Shi, Y., et al., 2022. Continental-scale plant invasions reshuffle the soil microbiome of blue carbon ecosystems. Glob. Chang Biol. 28, 4423-4438. Gao, Q.Z., Guo, Y.Q., Xu, H.M., et al., 2016. Climate change and its impacts on vegetation distribution and net primary productivity of the alpine ecosystem in the Qinghai-Tibetan Plateau. Sci. Total Environ. 554-555, 34-41. Gao, Y.H., Zhou, X., Wang, Q., et al., 2013. Vegetation net primary productivity and its response to climate change during 2001-2008 in the Tibetan Plateau. Sci. Total Environ. 444, 356-362. Gao, Z., Sun, H. Jiang, X, 2019. The List of Alien Invasive Species in Yunnan. Yunnan Science and Technology Press, Kunming. Gerard, M., Vanderplanck, M., Wood, T., et al., 2020. Global warming and plant-pollinator mismatches. Emerg. Top. Life Sci. 4, 77-86. Ghimire, S.K., McKey, D., Aumeeruddy-Thomas, Y., 2005. Conservation of Himalayan medicinal plants: harvesting patterns and ecology of two threatened species, Nardostachys grandiflora DC. and Neopicrorhiza scrophulariiflora (Pennell) Hong. Biol. Conserv. 124, 463-475. Gonzalez, A.M.M., Dalsgaard, B., Olesen, J.M., 2010. Centrality measures and the importance of generalist species in pollination networks. Ecol. Complex. 7, 36-43. Gottfried, M., Pauli, H., Futschik, A., et al., 2012. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Change 2, 111-115. Guo, C.A., Ding, X.Y., Addi, Y.W., et al., 2022. An ethnobotany survey of wild plants used by the Tibetan people of the Yadong River Valley, Tibet, China. J. Ethnobiol. Ethnomed. 18, 28. Guo, M.M., Zhang, Y.D., Wang, X.C., et al., 2018. The responses of dominant tree species to climate warming at the treeline on the eastern edge of the Tibetan Plateau. For. Ecol. Manag. 425, 21–26. Harley, C.D.G., 2011. Climate change, keystone predation, and biodiversity loss. Science 334, 1124-1127. Harsch, M.A., Hulme, P.E., McGlone, M.S., et al., 2009. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol. Lett. 12, 1040-1049. Hart, R., Salick, J., Ranjitkar, S., et al., 2014. Herbarium specimens show contrasting phenological responses to Himalayan climate. Proc. Natl. Acad. Sci. U. S. A. 111, 10615-10619. He, Y.L., Xiong, Q.L., Yu, L., et al., 2020. Impact of climate change on potential distribution patterns of alpine vegetation in the Hengduan Mountains region, China. Mt. Res. Dev. 40, R48-R54. Hegland, S.J., Nielsen, A., Lazaro, A., et al., 2009. How does climate warming affect plant-pollinator interactions? Ecol. Lett. 12, 184-195. Hickling, R., Roy, D.B., Hill, J.K., et al., 2006. The distributions of a wide range of taxonomic groups are expanding polewards. Glob. Chang Biol. 12, 450-455. Hinzman, L.D., Bettez, N.D., Bolton, W.R., et al., 2005. Evidence and implications of recent climate change in Northern Alaska and other Arctic regions. Clim. Change 72, 251-298. Holt, R.D., 1990. The microevolutionary consequences of climate change. Trends Ecol. Evol. 5, 311-315. Hu, H.W., Wei, Y.Q., Wang, W.Y., et al., 2021. The influence of climate change on three dominant alpine species under different scenarios on the Qinghai-Tibetan Plateau. Diversity 13, 682. Hu, X.L., Zhou, W.L., Sun, S.C., 2020. Responses of plant reproductive phenology to winter-biased warming in an alpine meadow. Front. Plant Sci. 11, 534703-534703. Hu, Z.J., Guo, K., Jin, S.L., et al., 2019. The influence of climatic changes on distribution pattern of six typical Kobresia species in Tibetan Plateau based on MaxEnt model and geographic information system. Theor. Appl. Clim. 135, 375-390. Huang, K., Zhang, Y.J., Zhu, J.T., et al., 2016. The influences of climate change and human activities on vegetation dynamics in the Qinghai-Tibet Plateau. Remote Sens. 8, 876. Huang, R.F., Wang, W.Y., 1991. The flora and community succession of cushion plant in Qinghai-Xizang plateau. Acta Biol. Plateau Sin. 10, 15-26. Hufft, R.A., DePrenger-Levin, M.E., Levy, R.A., et al., 2018. Using herbarium specimens to select indicator species for climate change monitoring. Biodivers. Conserv. 27, 1487-1501. Inouye, D.W., 2008. Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89, 353-362. Iseli, E., Chisholm, C., Lenoir, J., et al., 2023. Rapid upwards spread of non-native plants in mountains across continents. Nat. Ecol. Evol. 7, 405-413. Jackson, R.B., Schenk, H.J., Jobbagy, E.G., et al., 2000. Belowground consequences of vegetation change and their treatment in models. Ecol. Appl. 10, 470. Jiang, X.P., Michalet, R., Chen, S.Y., et al., 2018. Phenotypic effects of the nurse Thylacospermum caespitosum on dependent plant species along regional climate stress gradients. Oikos 127, 252-263. Jin, H. Y., Yin, Y. Q., Qi, Y., et al., 2025. How phenology interacts with frost tolerance in Southeastern Himalayan Rhododendron species. Tree Physiol. 45: tpaf036. Jobbagy, E.G., Jackson, R.B., 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423-436. Kelly, A.E., Goulden, M.L., 2008. Rapid shifts in plant distribution with recent climate change. Proc. Natl. Acad. Sci. U.S.A. 105, 11823-11826. Kharouba, H.M., Vellend, M., 2015. Flowering time of butterfly nectar food plants is more sensitive to temperature than the timing of butterfly adult flight. J. Anim. Ecol. 84, 1311-1321. Kirchhof, E., Campos-Argueda., Arias N. S., et al., 2025. Threholds for spring freezing: measuring risk to improve prediction in a warming world. New Phytol. 248, 563-575. Klein, J.A., Harte, J., Zhao, X.Q., 2008. Decline in medicinal and forage species with warming is mediated by plant traits on the Tibetan Plateau. Ecosystems 11, 775-789. Kong, C.H., 2007. Allelopathic potential of root exudates of larch (Larix gmelini) on Manchurian walnut (Juglans mandshurica). Allelopath. J. 20, 127-134. Korner, C., 1998. A re-assessment of high elevation treeline positions and their explanation. Oecologia 115, 445-459. Korner, C., 2003. Alpine plant life: functional plant ecology of high mountain ecosystems. Second Edition. Springer-Verlag Berlin Heideberg, Springer, New York. Korner, C., 2012. Alpine treelines: functional ecology of the global high elevation tree limits. Springer, Basel, Switzerland. Kudo, G., Ida, T.Y., 2013. Early onset of spring increases the phenological mismatch between plants and pollinators. Ecology 94, 2311-2320. Kumar Rai, P., Singh, J.S., 2020. Invasive alien plant species: their impact on environment, ecosystem services and human health. Ecol. Indic. 111, 106020-106020. LaMarche, V.C., Graybill, D.A., Fritts, H.C., et al., 1984. Increasing atmospheric carbon dioxide: tree ring evidence for growth enhancement in natural vegetation. Science 225, 1019-1021. Lamsal, P., Kumar, L., Shabani, F., et al., 2017. The greening of the Himalayas and Tibetan Plateau under climate change. Glob. Planet. Change 159, 77-92. Law, W., Salick, J., 2005. Human-induced dwarfing of Himalayan snow lotus, Saussurea laniceps (Asteraceae). Proc. Natl. Acad. Sci. U.S.A. 102, 10218-10220. Lenihan, J.M., Drapek, R., Bachelet, D., et al., 2003. Climate change effects on vegetation distribution, carbon, and fire in California. Ecol. Appl. 13, 1667-1681. Lenoir, J., Gegout, J.C., Marquet, P.A., et al., 2008. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768-1771. Li, G.Y., Liu, Y.Z., Frelich, L.E., et al., 2011. Experimental warming induces degradation of a Tibetan alpine meadow through trophic interactions. J. Appl. Ecol. 48, 659-667. Li, N.N., Zhang, A.P., Zhang, L., et al., 2019. Predicting potential distribution of two species of spruce in Qinghai-Tibet Plateau under climate change. Bull. Bot. Res. 39, 395-406. Li, Y.P., Feng, Y.L., Chen, Y.J., et al., 2015. Soil microbes alleviate allelopathy of invasive plants. Sci. Bull. 60, 1083-1091. Li, Z.R., Wu, N., Gao, X.F., et al., 2013. Species-level phenological responses to ‘global warming’ as evidenced by herbarium collections in the Tibetan Autonomous Region. Biodivers. Conserv. 22, 141-152. Liancourt, P., Spence, L.A., Song, D.S., et al., 2013. Plant response to climate change varies with topography, interactions with neighbors, and ecotype. Ecology 94, 444-453. Liang, E.Y., Shao, X.M., Xu, Y., 2009. Tree-ring evidence of recent abnormal warming on the southeast Tibetan Plateau. Theor. Appl. Climatol. 98, 9-18. Liang, E.Y., Wang, Y.F., Eckstein, D., et al., 2011. Little change in the fir tree-line position on the southeastern Tibetan Plateau after 200 years of warming. New Phytol. 190, 760-769. Liang, E.Y., Wang, Y.F., Piao, S.L., et al., 2016. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proc. Natl. Acad. Sci. U.S.A. 113, 4380-4385. Liang, Q.L., Xu, X.T., Mao, K.S., et al., 2018. Shifts in plant distributions in response to climate warming in a biodiversity hotspot, the Hengduan Mountains. J. Biogeogr. 45, 1334-1344. Liao, Z.Y., Nobis, M.P., Xiong, Q.L., et al., 2021. Potential distributions of seven sympatric sclerophyllous oak species in Southwest China depend on climatic, non-climatic, and independent spatial drivers. Ann. For. Sci. 78, 5. Liao, Z.Y., Zhang, L., Nobis, M.P., et al., 2020. Climate change jointly with migration ability affect future range shifts of dominant fir species in Southwest China. Divers. Distrib. 26, 352-367. Liu, J.Y., Xu, X.L., Shao, Q.Q., 2008. Grassland degradation in the “Three-River Headwaters” region, Qinghai Province. J. Geogr. Sci. 18, 259-273. Liu, W.H., Zheng, J.W., Wang, Z.R., et al., 2021. A bibliometric review of ecological research on the Qinghai-Tibet Plateau, 1990-2019. Ecol. Inform. 64, 101337. Liu, X.D., Chen, B.D., 2000. Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol. 20, 1729-1742. Liu, X.D., Yin, Z.Y., Shao, X.M., et al., 2006. Temporal trends and variability of daily maximum and minimum, extreme temperature events, and growing season length over the eastern and central Tibetan Plateau during 1961-2003. J. Geophys. Res. 111, D19109. Liu, X.J., Sun, X.G., Tian, Q., 2016. Effect of cushion plant Thylacospermum caespitosum Camb. on species diversity of community. Acta Ecol. Sin. 36, 2905-2913. Liu, Y., Wang, H., Qian, X., et al., 2023. Metagenomics insights into responses of rhizobacteria and their alleviation role in licorice allelopathy. Microbiome 11, 109-109. Liu, Y.Z., Mu, J.P., Niklas, K.J., et al., 2012. Global warming reduces plant reproductive output for temperate multi-inflorescence species on the Tibetan plateau. New Phytol. 195, 427-436. Loomis, P.F., Ruess, R.W., Sveinbjornsson, B., et al., 2006. Nitrogen cycling at treeline: latitudinal and elevational patterns across a boreal landscape. Ecoscience 13, 544-556. Losapio, G., Fortuna, M.A., Bascompte, J., et al., 2019. Plant interactions shape pollination networks via nonadditive effects. Ecology 100, e02619. Losapio, G., Schob, C., 2020. Pollination interactions reveal direct costs and indirect benefits of plant-plant facilitation for ecosystem engineers. J. Plant Ecol. 13, 107-113. Lu, X.M., Liang, E.Y., Babst, F., et al., 2022. Warming-induced tipping points of Arctic and alpine shrub recruitment. Proc. Natl. Acad. Sci. U.S.A. 119, e2118120119. Lucht, W., Prentice, I.C., Myneni, R.B., et al., 2002. Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science 296, 1687-1689. Ma, J.Z., Zhuang, H.F., 2010. Diversity and utilization of Tibetan medicinal plants in Deqin. Acta Bot. Yunnan. 32, 67-73. Malcolm, J.R., Liu, C., Neilson, R.P., et al., 2006. Global warming and extinctions of endemic species from biodiversity hotspots. Conserv. Biol. 20, 538-548. Martinez-Vilalta, J., Lloret, F., 2016. Drought-induced vegetation shifts in terrestrial ecosystems: the key role of regeneration dynamics. Glob. Planet. Change 144, 94-108. McKinney, A.M., CaraDonna, P.J., Inouye, D.W., et al., 2012. Asynchronous changes in phenology of migrating Broad-tailed Hummingbirds and their early-season nectar resources. Ecology 93, 1987-1993. McNown, R.W., Sullivan, P.F., 2013. Low photosynthesis of treeline white spruce is associated with limited soil nitrogen availability in the Western Brooks Range, Alaska. Funct. Ecol. 27, 672-683. Memmott, J., Craze, P.G., Waser, N.M., et al., 2007. Global warming and the disruption of plant-pollinator interactions. Ecol. Lett. 10, 710-717. Meng, H.H., Zhou, S.S., Jiang, X.L., et al., 2019. Are mountaintops climate refugia for plants under global warming? A lesson from high-mountain oaks in tropical rainforest. Alp. Bot. 129, 175-183. Miehe, G., 1996. On the connexion of vegetation dynamics with climatic changes in High Asia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 120, 5-24. Miehe, G., Mao, K., Hasson, S.u., et al., 2023. What do we know about treelines of the Anthropocene in High Asia? Plant Divers. 47, XXX-XXX. 10.1016/j.pld.2023.08.005. Miehe, G., Miehe, S., Bohner, J., et al., 2014. How old is the human footprint in the world's largest alpine ecosystem? A review of multiproxy records from the Tibetan Plateau from the ecologists' viewpoint. Quat. Sci. Rev. 86, 190-209. Miehe, G., Schleuss, P.-M., Seeber, E., et al., 2019. The Kobresia pygmaea ecosystem of the Tibetan highlands - Origin, functioning and degradation of the world's largest pastoral alpine ecosystem. Sci. Total Environ. 648, 754-771. Mo, L., Luo, P., Mou, C., et al., 2018. Winter plant phenology in the alpine meadow on the eastern Qinghai-Tibetan Plateau. Ann. Bot. 122, 1033-1045. Montero-Castano, A., Vila, M., 2012. Impact of landscape alteration and invasions on pollinators: a meta-analysis. J. Ecol. 100, 884-893. Mooney, H.A., Cleland, E.E., 2001. The evolutionary impact of invasive species. Proc. Natl. Acad. Sci. U.S.A. 98, 5446-5451. Morales, M.S., Villalba, R., Grau, H.R., et al., 2004. Rainfall-controlled tree growth in high-elevation subtropical treelines. Ecology 85, 3080-3089. Morris, W.F., Doak, D.F., 1998. Life history of the long-lived gynodioecious cushion plant Silene acaulis (Caryophyllaceae), inferred from size-based population projection matrices. Am. J. Bot. 85, 784-793. Mu, J.P., Peng, Y.H., Xi, X.Q., et al., 2015. Artificial asymmetric warming reduces nectar yield in a Tibetan alpine species of Asteraceae. Ann. Bot. 116, 899-906. Muller, M., Schickhoff, U., Scholten, T., et al., 2016. How do soil properties affect alpine treelines? General principles in a global perspective and novel findings from Rolwaling Himal, Nepal. Prog. Phys. Geogr. Earth Environ. 40, 135-160. Myers-Smith, I.H., Hik, D.S., 2018. Climate warming as a driver of tundra shrubline advance. J. Ecol. 106, 547-560. Ni, J., Sykes, M.T., Prentice, I.C., et al., 2000. Modelling the vegetation of China using the process-based equilibrium terrestrial biosphere model BIOME3. Glob. Ecol. Biogeogr. 9, 463-479. Nicolussi, K., Bortenschlager, S., Korner, C., 1995. Increase in tree-ring width in subalpine Pinus cembra from the central Alps that may be CO2-related. Trees 9, 181-189. Ning, B.Y., Yang, X.M., Chang, L., 2012. Changes of temperature and precipitation extremes in Hengduan Mountains, Qinghai-Tibet Plateau in 1961-2008. Chin. Geogr. Sci. 22, 422-436. Niu, M.Q., Huang, M.H., Yang, P.F., et al., 2025a. Multiple cushion plants enhance alpine plant diversity through sustaining plant-plant co-occurrence networks. J. Plant Ecol. 2025, DOI: 10.1093/jpe/rtaf116. Niu, M.Q., Zhang, T., Qian, L.S., et al., 2025b. Cushion plants increase and maintain alpine insect diversity through sustaining plant-insect interaction networks. Oikos 2025, e11585, DOI: 10.1002/oik.11585. Niu, Y., Stevens, M., Sun, H., 2021. Commercial harvesting has driven the evolution of camouflage in an alpine plant. Curr. Biol. 31, 446-449. Nolan, C., Overpeck, J.T., Allen, J.R.M., et al., 2018. Past and future global transformation of terrestrial ecosystems under climate change. Science 361, 920-923. Olsen, C.S., 2005. Trade and conservation of Himalayan medicinal plants: Nardostachys grandiflora DC. and Neopicrorhiza scrophulariiflora (Pennell) Hong. Biol. Conserv. 125, 505-514. |
| [1] | Georg Miehe, Kangshan Mao, Shabeh ul Hasson, Jürgen Böhner, Udo Schickhoff. What do we know about treelines of the Anthropocene in High Asia? [J]. Plant Diversity, 2025, 47(06): 866-875. |
| [2] | Liping Shan, Meng Hou. Herbivore and native plant diversity synergistically resist alien plant invasion regardless of nutrient conditions [J]. Plant Diversity, 2024, 46(05): 640-647. |
| [3] | Yanwei Guan, Yongru Wu, Zheng Cao, Zhifeng Wu, Fangyuan Yu, Haibin Yu, Tiejun Wang. Island biogeography theory and the habitat heterogeneity jointly explain global patterns of Rhododendron diversity [J]. Plant Diversity, 2024, 46(05): 565-574. |
| [4] | Shengchun Li, Tieyao Tu, Shaopeng Li, Xian Yang, Yong Zheng, Liang-Dong Guo, Dianxiang Zhang, Lin Jiang. Different mechanisms underlie similar species-area relationships in two tropical archipelagoes [J]. Plant Diversity, 2024, 46(02): 238-246. |
| [5] | Nian Zhou, Ke Miao, Changkun Liu, Linbo Jia, Jinjin Hu, Yongjiang Huang, Yunheng Ji. Historical biogeography and evolutionary diversification of Lilium (Liliaceae): New insights from plastome phylogenomics [J]. Plant Diversity, 2024, 46(02): 219-228. |
| [6] | Yue-Wen Xu, Lu Sun, Rong Ma, Yong-Qian Gao, Hang Sun, Bo Song. Does pollinator dependence decrease along elevational gradients? [J]. Plant Diversity, 2023, 45(04): 446-455. |
| [7] | Yazhou Zhang, Lishen Qian, Daniel Spalink, Lu Sun, Jianguo Chen, Hang Sun. Spatial phylogenetics of two topographic extremes of the Hengduan Mountains in southwestern China and its implications for biodiversity conservation [J]. Plant Diversity, 2021, 43(03): 181-191. |
| [8] | Huifu Zhuang, Chen Wang, Yanan Wang, Tao Jin, Rong Huang, Zihong Lin, Yuhua Wang. Native useful vascular plants of China: A checklist and use patterns [J]. Plant Diversity, 2021, 43(02): 134-141. |
| [9] | Bin Yang, Min Deng, Ming-Xia Zhang, Aung Zaw Moe, Hong-Bo Ding, Mya Bhone Maw, Pyae Pyae Win, Richard T. Corlett, Yun-Hong Tan. Contributions to the flora of Myanmar from 2000 to 2019 [J]. Plant Diversity, 2020, 42(04): 292-301. |
| [10] | Richard T. Corlett. Safeguarding our future by protecting biodiversity [J]. Plant Diversity, 2020, 42(04): 221-228. |
| [11] | Joseph O. Ondier, Daniel O. Okach, John C. Onyango, Dennis O. Otieno. Interactive influence of rainfall manipulation and livestock grazing on species diversity of the herbaceous layer community in a humid savannah in Kenya [J]. Plant Diversity, 2019, 41(03): 198-205. |
| [12] | Christopher P. Dunn. Biological and cultural diversity in the context of botanic garden conservation strategies [J]. Plant Diversity, 2017, 39(06): 396-401. |
| [13] | Vernon H. Heywood. Plant conservation in the Anthropocene-Challenges and future prospects [J]. Plant Diversity, 2017, 39(06): 314-330. |
| [14] | TANG Min-, YI Ting-Shuang-, WANG Xin-, TAN Mei-Hua-, ZHOU Xin. The Application of Metabarcoding Technology in Identification of Plant Species Diversity [J]. Plant Diversity, 2013, 35(6): 769-773. |
| [15] | YANG Xiang-Yun, CA Jie, ZHANG Ting, DU Yan. The Potential Contribution of Plant DNA Barcoding and iFlora to Plant Germplasm Conservation [J]. Plant Diversity, 2012, 34(6): 539-545. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
