Plant Diversity ›› 2023, Vol. 45 ›› Issue (04): 446-455.DOI: 10.1016/j.pld.2023.03.006
• Articles • Previous Articles Next Articles
Yue-Wen Xua, Lu Suna, Rong Maa,b, Yong-Qian Gaoc, Hang Suna, Bo Songa
Received:
2023-01-31
Revised:
2023-03-15
Online:
2023-08-21
Published:
2023-07-25
Contact:
Hang Sun,E-mail:sunhang@mail.kib.ac.cn;Bo Song,E-mail:songbo@mail.kib.ac.cn
Supported by:
Yue-Wen Xua, Lu Suna, Rong Maa,b, Yong-Qian Gaoc, Hang Suna, Bo Songa
通讯作者:
Hang Sun,E-mail:sunhang@mail.kib.ac.cn;Bo Song,E-mail:songbo@mail.kib.ac.cn
基金资助:
Yue-Wen Xu, Lu Sun, Rong Ma, Yong-Qian Gao, Hang Sun, Bo Song. Does pollinator dependence decrease along elevational gradients?[J]. Plant Diversity, 2023, 45(04): 446-455.
Yue-Wen Xu, Lu Sun, Rong Ma, Yong-Qian Gao, Hang Sun, Bo Song. Does pollinator dependence decrease along elevational gradients?[J]. Plant Diversity, 2023, 45(04): 446-455.
[1] Abdusalam, A., Li, Q.-J., 2019. Elevation-related variation in the population characteristics of distylous Primula nivalis affects female fitness and inbreeding depression. Plant Divers. 41, 250-257. [2] Armbruster, P., Reed, D.H., 2005. Inbreeding depression in benign and stressful environments. Heredity 95, 235-242. [3] Arroyo, M.T.K., Armesto, J.J., Primack, R.I.C.H.A.R.D., 1983. Tendencias altitudinales y latitudinales en mecanismos de polinizacion en la zona andina de los Andes templados de Sudamerica. Rev. Chil. Hist. Nat. 56, 159-180. [4] Arroyo, M.T.K., Munoz, M.S., Henriquez, C., Till-Bottraud, I., et al., 2006. Erratic pollination, high selfing levels and their correlates and consequences in an altitudinally widespread above-tree-line species in the high Andes of Chile. Acta Oecol. 30, 248-257. [5] Arroyo, M.T.K., Primack, R., Armesto, J., 1982. Community studies in pollination ecology in the high temperate Andes of central Chile. I. Pollination mechanisms and altitudinal variation. Am. J. Bot. 69, 82-97. [6] Ashman, T.L., 2004. Flower longevity. In: Nooden, L.D. (Ed.), Plant Cell Death Process. Elsevier, London, U.K, pp. 349–362. [7] Barrett, S.C., 2002. The evolution of plant sexual diversity. Nat. Rev. Genet. 3, 274-284. [8] Bennett, J.M., Steets, J.A., Burns, J.H., et al., 2020. Land use and pollinator dependency drives global patterns of pollen limitation in the Anthropocene. Nat. Commun. 11, 1-6. [9] Bingham, R.A., Orthner, A.R., 1998. Efficient pollination of alpine plants. Nature 391, 238-239. [10] Bingham, R.A., Ranker, T.A., 2000. Genetic diversity in alpine and foothill populations of Campanula rotundifolia (Campanulaceae). Int. J. Plant Sci. 161, 403-411. [11] Burkle, L.A., Alarcon, R., 2011. The future of plant-pollinator diversity: understanding interaction networks across time, space, and global change. Am. J. Bot. 98, 528-538. [12] Burkner, P.C., 2017. brms: An R package for Bayesian multilevel models using Stan. J Stat Softw. 80, 1-28. [13] Busch, J.W., Delph, L.F., 2012. The relative importance of reproductive assurance and automatic selection as hypotheses for the evolution of self-fertilization. Ann. Bot. 109, 553-562. [14] Chen, J.-G., Zhang, Y.-Z., Zhang, H.-R., et al., 2021. The positive effects of the alpine cushion plant Arenaria polytrichoides on insect dynamics are determined by both physical and biotic factors. Sci. Total Environ. 762, 143091. [15] Chen, S.-C., Tamme, R., Thomson, F.J., et al., 2019. Seeds tend to disperse further in the tropics. Ecol. Lett. 22, 954-961. [16] Cook, S.M., Bartlet, E., Murray, D.A., et al., 2002. The role of pollen odour in the attraction of pollen beetles to oilseed rape flowers. Entomol. Exp. Appl. 104, 43-50. [17] Devlin, R.M., Witham, F.H., 1983. Plant Physiology, 4th edn. Willard Grant, Boston. [18] Duan, Y.-W., He, Y.-P., Liu, J.-Q., 2005. Reproductive ecology of the Qinghai-Tibet Plateau endemic Gentiana straminea (Gentianaceae), a hermaphrodite perennial characterized by herkogamy and dichogamy. Acta Oecol. 27, 225-232. [19] Duan, Y.-W., He, Y.-P., Zhang, T.-F., et al., 2007a. Delayed selfing in an alpine species Gentianopsis barbata. Chin. J. Plant Ecol. 31, 110. [20] Duan, Y.-W., Zhang, T.-F., Liu, J.-Q., 2007b. Pollination biology of Anisodus tanguticus (Solanaceae). Biodivers. Sci. 15, 584-591. [21] Eckert C.G., Samis K.E., Dart S., 2006. Reproductive assurance and the evolution of uniparental reproduction in flowering plants. In: Harder, L.D., Barrett, S.C.H. (Eds.), Ecology and evolution of flowers. Oxford University Press, U.K., pp. 183-203. [22] Eriksen, B., Molau, U., Svensson, M., 1993. Reproductive strategies in two arctic Pedicularis species (Scrophulariaceae). Ecography 16, 154-166. [23] Foster, O., Caruso, C.M., 2022. Evidence for a cost of increased floral longevity in female and hermaphrodite Lobelia siphilitica (Campanulaceae). Int. J. Plant Sci. 183, 186-192. [24] Galman, A., Abdala-Roberts, L., Zhang, S., et al., 2018. A global analysis of elevational gradients in leaf herbivory and its underlying drivers: Effects of plant growth form, leaf habit and climatic correlates. J. Ecol. 106, 413-421. [25] Garcia-Camacho, R., Totland, OE., 2009. Pollen limitation in the alpine: a meta-analysis. Arct. Antarct. Alp. Res. 41, 103-111. [26] Goodwillie C., Kalisz S., Eckert C.G., 2005. The evolutionary enigma of mixed mating system in plants: occurrence, theoretical explanations, and empirical evidence. Annu. Rev. Ecol. Evol. Syst. 36, 47-79. [27] Grossenbacher, D.L., Brandvain, Y., Auld, J.R., et al., 2017. Self-compatibility is over-represented on islands. New Phytol. 215, 469-478. [28] Guerra, T.J., Galetto, L., Silva, W.R., 2014. Nectar secretion dynamic links pollinator behavior to consequences for plant reproductive success in the ornithophilous mistletoe Psittacanthus robustus. Plant Biol. 16, 956-966. [29] Gugerli, F., 1998. Effect of elevation on sexual reproduction in alpine populations of Saxifraga oppositifolia (Saxifragaceae). Oecologia 114, 60-66. [30] Haig, D., Westoby, M., 1988. On limits to seed production. Am. Nat. 131, 757-759. [31] Herlihy, C.R., Eckert, C.G., 2005. Evolution of self-fertilization at geographical range margins? A comparison of demographic, floral, and mating system variables in central vs. peripheral populations of Aquilegia canadensis (Ranunculaceae). Am. J. Bot. 92, 744-751. [32] Ishii, H.S., Sakai, S., 2000. Optimal timing of corolla abscission: experimental study on Erythronium japonicum (Liliaceae). Funct. Ecol. 14, 122-128. [33] Jiang, X.-F., Xie Y.-P., 2020. Meta-analysis reveals severe pollen limitation for the flowering plants growing in East Himalaya-Hengduan Mountains region. BMC Ecology 20, 1-9. [34] Jin, Y., Qian, H., 2022. V.PhyloMaker2: An updated and enlarged R package that can generate very large phylogenies for vascular plants. Plant Divers. 44, 335-339. [35] Jin, Y., Qian, H., 2023. U.PhyloMaker: An R package that can generate large phylogenetic trees for plants and animals. Plant Divers. https://doi.org/10.1016/j.pld.2022.12.007. [36] Kalisz, S., Vogler, D.W., Hanley, K.M., 2004. Context-dependent autonomous self-fertilization yields reproductive assurance and mixed mating. Nature 430, 884-887. [37] Kembel, S., 2010. An introduction to the picante package. Available from http://picante.r-forge.r-project.org/picante-intro.pdf. [38] Knight, T. M., Steets, J. A., Vamosi, J. C., et al., 2005. Pollen limitation of plant reproduction: pattern and process. Annu. Rev. Ecol. Evol. Syst. 36, 467-497. [39] Korner, C., 2003. Alpine Plant Life. Springer Verlag, Berlin. [40] Korner, C., 2007. The use of ‘altitude’ in ecological research. Trends. Ecol. Evol. 22, 569-574. [41] Korner, C., Paulsen, J., 2009. Exploring and explaining mountain biodiversity. In: Spehn, E.M., Korner, C. (Eds.), Data mining for global trends in mountain biodiversity. CRC Press, Boca Raton, Florida, U.S.A. [42] Koski, M.H., Galloway, L.F., Busch, J.W., 2019. Pollen limitation and autonomous selfing ability interact to shape variation in outcrossing rate across a species range. Am. J. Bot. 106, 1240-1247. [43] Koski, M.H., Grossenbacher, D.L., Busch, J.W., et al., 2017. A geographic cline in the ability to self-fertilize is unrelated to the pollination environment. Ecology 98, 2930-2939. [44] Kuriya, S., Hattori, M., Nagano, Y., et al., 2015. Altitudinal flower size variation correlates with local pollinator size in a bumblebee-pollinated herb, Prunella vulgaris L. (Lamiaceae). J. Evol. Biol. 28, 1761-1769. [45] Lara-Romero, C., Segui, J., Perez-Delgado, A., et al., 2019. Beta diversity and specialization in plant-pollinator networks along an elevational gradient. J. Biogeogr. 46, 1598-1610. [46] Larson, B.M., Barrett, S.C., 2000. A comparative analysis of pollen limitation in flowering plants. Biol. J. Linn. Soc. 69, 503-520. [47] Li, D.-F., Yan, X.-C., Lin, Y., et al., 2021. Do flowers removed of either nectar or pollen attract fewer bumblebee pollinators? An experimental test in Impatiens oxyanthera. AoB Plants 13, plab029. [48] Li, M.-R., Sui, Y., Wang, X.-N., et al., 2022. High outcrossing rates in a self-compatible and highly aggregated host-generalist mistletoe. Mol. Ecol. 31, 6489-6504. [49] Liu, J., Milne, R.I., Zhu, G.-F., et al., 2022. Name and scale matter: clarifying the geography of Tibetan Plateau and adjacent mountain regions. Global Planet. Change 215, 103893. [50] Ma, Y.-M., Cha, Y.-P., Tong, Z.-L., et al., 2023. The nonlinear change in pollinator assemblages and self-mating syndromes of Primula atrodentata along elevation gradients. J. Plant Ecol. 16, rtac109, https://doi.org/10.1093/jpe/rtac109. [51] Maglianesi, M.A., Bluthgen, N., Bohning-Gaese, K. et al., 2015. Functional structure and specialization in three tropical plant-hummingbird interaction networks across an elevational gradient in Costa Rica. Ecography 38, 1119-1128. [52] Medan, D., Montaldo, N.H., Devoto, M., et al., 2002. Plant-pollinator relationships at two altitudes in the Andes of Mendoza, Argentina. Arct. Antarct. Alp. Res. 34, 233-241. [53] Melathopoulos, A.P., Cutler, G.C., Tyedmers, P., 2015. Where is the value in valuing pollination ecosystem services to agriculture? Ecol. Econ. 109, 59-70. [54] Millard, J., Outhwaite, C.L., Kinnersley, R., et al., 2021. Global effects of land-use intensity on local pollinator biodiversity. Nat. Commun. 12, 1-11. [55] Miller-Struttmann, N., Miller, Z., Galen, C., 2022. Climate driven disruption of transitional alpine bumble bee communities. Global Change Biol. 28, 6165-6179. [56] Moeller, D.A., Briscoe Runquist, R.D., Moe, A.M., et al., 2017. Global biogeography of mating system variation in seed plants. Ecol. Lett. 20, 375-384. [57] Molau, U., 1993. Relationships between flowering phenology and life history strategies in tundra plants. Arct. Alp. Res. 25, 391-402. [58] Moles, A.T., Bonser, S.P., Poore, A.G., et al., 2011a. Assessing the evidence for latitudinal gradients in plant defence and herbivory. Funct. Ecol. 25, 380-388. [59] Moles, A.T., Laffan, S.W., Keighery, M., et al., 2020. A hairy situation: Plant species in warm, sunny places are more likely to have pubescent leaves. J. Biogeogr. 47, 1934-1944. [60] Moles, A.T., Wallis, I.R., Foley, W.J., et al., 2011b. Putting plant resistance traits on the map: a test of the idea that plants are better defended at lower latitudes. New Phytol. 191, 777-788. [61] Moles, A.T., Warton, D.I., Warman, L., et al., 2009. Global patterns in plant height. J. Ecol. 97, 923-932. [62] Morgan, M.T., Wilson, W.G., 2005. Self-fertilization and the escape from pollen limitation in variable pollination environments. Evolution 59, 1143-1148. [63] Myers, N., Mittermeier, R.A., Mittermeier, C.G., et al., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853-858. [64] Olesen, J.M., Jordano, P., 2002. Geographic patterns in plant-pollinator mutualistic networks. Ecology 83, 2416-2424. [65] Ollerton, J., Winfree, R., Tarrant, S., 2011. How many flowering plants are pollinated by animals? Oikos 120, 321-326. [66] Pan, B.-T., Gao, H.-S., Li, B.-Y., et al., 2004. Step-like landforms and uplift of the Qinghai-Xizang Plateau. Quat. Sci. 24, 50-57. [67] Peng, D.-L., Niu, Y., Song, B., et al., 2015. Woolly and overlapping leaves dampen temperature fluctuations in reproductive organ of an alpine Himalayan forb. J. Plant Ecol. 8, 159-165. [68] Peng, D.-L., Ou, X.-K., Xu, B., et al., 2014. Plant sexual systems correlated with morphological traits: Reflecting reproductive strategies of alpine plants. J. Syst. Evol. 52: 368-377. [69] Peng, D.-L., Song, B., Yang, Y., et al., 2016. Overlapping Leaves Covering Flowers in the Alpine Species Eriophyton wallichii (Lamiaceae): Key Driving Factors and Their Potential Impact on Pollination. PLoS One 11, e0164177. [70] Peng, D.-L., Zhang, Z.-Q., Niu, Y., et al., 2012. Advances in the studies of reproductive strategies of alpine plants. Biodivers. Sci. 20: 286-299. [71] Post, E., Forchhammer, M.C., Bret-Harte, M.S., et al., 2009. Ecological dynamics across the Arctic associated with recent climate change. Science 325, 1355-1358. [72] Potts, S.G., Biesmeijer, J.C., Kremen, C., et al., 2010. Global pollinator declines: Trends, impacts and drivers. Trends. Ecol. Evol. 25, 345-353. [73] Primack, R.B., 1985. Longevity of individual flowers. Annu. Rev. Ecol. Syst. 16, 15-37. [74] Pyke, G.H., 2016. Floral nectar: pollinator attraction or manipulation? Trends. Ecol. Evol. 31, 339-341. [75] Qian, H., Zhang, J., Jiang, M., 2023. Global patterns of taxonomic and phylogenetic diversity of flowering plants: Biodiversity hotspots and coldspots. Plant Divers. https://doi.org/10.1016/j.pld.2023.01.009. [76] R Core Team, 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. [77] Raduski, A.R., Haney, E.B., Igic, B., 2012. The expression of self-incompatibility in angiosperms is bimodal. Evolution 66, 1275-1283. [78] Randle, A.M., Slyder, J.B., Kalisz, S., 2009. Can differences in autonomous selfing ability explain differences in range size among sister-taxa pairs of Collinsia (Plantaginaceae)? An extension of Baker's Law. New Phytol. 183, 618-629. [79] Ratto, F., Simmons, B.I., Spake, R., et al., 2018. Global importance of vertebrate pollinators for plant reproductive success: a meta-analysis. Front. Ecol. Environ. 16, 82-90. [80] Revell, L.J., 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217-223. [81] Rodger, J.G., Bennett, J.M., Razanajatovo, M., et al., 2021. Widespread vulnerability of flowering plant seed production to pollinator declines. Sci. Adv. 7, eabd3524. [82] Sakai, S., Metelmann, S., Toquenaga, Y. et al., 2016. Geographical variation in the heterogeneity of mutualistic networks. Roy. Soc. Open Sci. 3, 150630. [83] Schemske, D.W., Mittelbach, G.G., Cornell, H.V., et al., 2009. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 40, 245. [84] Scherrer, D., Korner, C., 2011. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 38, 406-416. [85] Schoen, D.J., Brown, A.H., 1991. Whole-and part-flower self-pollination in Glycine clandestina and G. argyrea and the evolution of autogamy. Evolution 45, 1651-1664. [86] Smith, S.A., Brown, J.W., 2018. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302-314. [87] Song, B., Chen, G., Stocklin, J., et al., 2014. A new pollinating seed-consuming mutualism between Rheum nobile and a fly fungus gnat, Bradysia sp., involving pollinator attraction by a specific floral compound. New Phytol. 203, 109-1118. [88] Song, B., Stocklin, J., Peng, D.-L., et al., 2015. The bracts of the alpine ‘glasshouse’ plant Rheum alexandrae (Polygonaceae) enhance reproductive fitness of its pollinating seed-consuming mutualist. Bot. J. Linn. Soc. 179, 349-359. [89] Song, B., Sun, L., Barrett, S.C., et al., 2022. Global analysis of floral longevity reveals latitudinal gradients and biotic and abiotic correlates. New Phytol. 235, 2054-2065. [90] Song, B., Sun, L., Lev-Yadun, S., et al., 2020. Plants are more likely to be spiny at mid-elevations in the Qinghai-Tibetan Plateau, south-western China. J. Biogeogr. 47, 250-260. [91] Song, B., Zhang, Z.-Q., Stocklin, J., et al., 2013. Multifunctional bracts enhance plant fitness during flowering and seed development in Rheum nobile (Polygonaceae), a giant herb endemic to the high Himalayas. Oecologia 172, 359-370. [92] Stratton, D.A., 1989. Longevity of individual flowers in a Costa Rican cloud forest: ecological correlates and phylogenetic constraints. Biotropica 21, 308-318. [93] Sun, H., Niu, Y., Chen, Y.-S., et al. 2014. Survival and reproduction of plant species in the Qinghai-Tibet Plateau. J. Syst. Evol. 52, 378-396. [94] Sun, H., Zhang, J.-W., Deng, T., et al., 2017. Origins and evolution of plant diversity in the Hengduan Mountains, China. Plant Divers. 39, 161-166. [95] The State Council Information Office of the People’s Republic of China, 2018. Ecological Progress on the Qinghai-Tibet Plateau. http://english.www.gov.cn/archive/white_paper/2018/07/18/content_281476227186598.htm [96] Thomann, M., Imbert, E., Devaux, C., et al., 2013. Flowering plants under global pollinator decline. Trends Plant Sci. 18, 353-359. [97] Tong, Z.-Y., Wu, L.-Y., Huang, S.-Q., 2021. Reproductive strategies of animal-pollinated plants on high mountains: A review of studies from the “Third Pole”. J. Syst. Evol. 59, 1159-1169. [98] Torang, P., Vikstrom, L., Wunder, J., et al., 2017. Evolution of the selfing syndrome: Anther orientation and herkogamy together determine reproductive assurance in a self-compatible plant. Evolution 71, 2206-2218. [99] Totland, OE., 2001. Environment-dependent pollen limitation and selection on floral traits in an alpine species. Ecology 82, 2233-2244. [100] Trunschke, J., Stocklin, J., 2017. Plasticity of flower longevity in alpine plants is increased in populations from high elevation compared to low elevation populations. Alp. Bot. 127, 41-51. [101] Turcotte, M.M., Thomsen, C.J., Broadhead, G.T., et al., 2014. Percentage leaf herbivory across vascular plant species. Ecology 95, 788-788. [102] Vamosi, S.M., Queenborough, S.A., 2010. Breeding systems and phylogenetic diversity of seed plants along a large-scale elevational gradient. J. Biogeogr. 37, 465-476. [103] Wirth, L.R., Graf, R., Gugerli, F., et al., 2010. Lower selfing rate at higher altitudes in the alpine plant Eritrichium nanum (Boraginaceae). Am. J. Bot. 97, 899-901. [104] Xiong, Y.-Z., Fang, Q., Huang, S.-Q., 2013. Pollinator scarcity drives the shift to delayed selfing in Himalayan mayapple Podophyllum hexandrum (Berberidaceae). AoB Plants. 5, plt037. [105] Zanne, A.E., Tank, D.C., Cornwell, et al., 2014. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89-92. [106] Zhang, D.-C., Ye, J.-X., Sun, H. 2016a. Quantitative approaches to identify floristic units and centres of species endemism in the Qinghai-Tibetan Plateau, south-western China. J. Biogeogr. 43, 2465-2476. [107] Zhang J., Liu B., Liu S., et al., 2022. helixcn/plantlist: Looking Up the Status of Plant Scientific Names based on The Plant List Database, Searching the Chinese Names and Making checklists of plants. R package version 0.8.0. Available from https://github.com/helixcn/plantlist/. [108] Zhang, S., Ai, H.-L., Yu, W.-B., et al., 2010. Flower heliotropism of Anemone rivularis (Ranunculaceae) in the Himalayas: Effects on floral temperature and reproductive fitness. Plant Ecol. 209, 301-312. [109] Zhang, S., Zhang, Y.-X., Ma, K.-M., 2016b. Latitudinal variation in herbivory: hemispheric asymmetries and the role of climatic drivers. J. Ecol. 104, 1089-1095. [110] Zhang, Y., Li, B., Zheng, D., 2002. A discussion on the boundary and area of the Tibetan Plateau in China. Geogr. Res. 21, 1-8. [111] Zhang, Z.-Q., Kress, W.J., Xie, W.-J., et al., 2011. Reproductive biology of two Himalayan alpine gingers (Roscoea spp., Zingiberaceae) in China: pollination syndrome and compensatory floral mechanisms. Plant Biol. 13, 582-589. [112] Zhang, Z.-Q., Li, Q.-J., 2008. Autonomous selfing provides reproductive assurance in an alpine ginger Roscoea schneideriana (Zingiberaceae). Ann. Bot. 102, 531-538. |
[1] | Liping Shan, Meng Hou. Herbivore and native plant diversity synergistically resist alien plant invasion regardless of nutrient conditions [J]. Plant Diversity, 2024, 46(05): 640-647. |
[2] | Dilmurod Makhmudjanov, Sergei Volis, Ziyoviddin Yusupov, Inom Juramurodov, Komiljon Tojibaev, Tao Deng, Hang Sun. Central Asia revealed as a key area in evolution of Eremurus (Asphodelaceae) [J]. Plant Diversity, 2024, 46(03): 333-343. |
[3] | Nian Zhou, Ke Miao, Changkun Liu, Linbo Jia, Jinjin Hu, Yongjiang Huang, Yunheng Ji. Historical biogeography and evolutionary diversification of Lilium (Liliaceae): New insights from plastome phylogenomics [J]. Plant Diversity, 2024, 46(02): 219-228. |
[4] | Peng-Cheng Fu, Qiao-Qiao Guo, Di Chang, Qing-Bo Gao, Shan-Shan Sun. Cryptic diversity and rampant hybridization in annual gentians on the Qinghai-Tibet Plateau revealed by population genomic analysis [J]. Plant Diversity, 2024, 46(02): 194-205. |
[5] | Haibin Yu, Man Yang, Zixin Lu, Weitao Wang, Fangyuan Yu, Yonghua Zhang, Xue Yin, Hongjun Yu, Junjie Hu, David C. Deane. A phylogenetic approach identifies patterns of beta diversity and floristic subregions of the Qinghai-Tibet Plateau [J]. Plant Diversity, 2024, 46(01): 59-69. |
[6] | Daniel Mutavi Katumo, Huan Liang, Anne Christine Ochola, Min Lv, Qing-Feng Wang, Chun-Feng Yang. Pollinator diversity benefits natural and agricultural ecosystems, environmental health, and human welfare [J]. Plant Diversity, 2022, 44(05): 429-435. |
[7] | Xinhui Li, Tao Yang, Dandan Wang. Phylogenetic and functional structures of succession in plant communities on mounds of Marmota himalayana in alpine regions on the northeast edge of the Qinghai-Tibet Plateau [J]. Plant Diversity, 2021, 43(04): 275-280. |
[8] | Feng-Wei Lei, Ling Tong, Yi-Xuan Zhu, Xian-Yun Mu, Tie-Yao Tu, Jun Wen. Plastid phylogenomics and biogeography of the medicinal plant lineage Hyoscyameae (Solanaceae) [J]. Plant Diversity, 2021, 43(03): 192-197. |
[9] | Wenguang Sun, Haixia Wang, Rui Wu, Hang Sun, Zhimin Li. Karyomorphology of three endemic plants (Brassicaceae: Euclidieae and Arabideae) from the Qinghai-Tibet Plateau and its significance [J]. Plant Diversity, 2020, 42(03): 135-141. |
[10] | Ted Chapman, Stephanie Miles, Clare Trivedi. Capturing, protecting and restoring plant diversity in the UK: RBG Kew and the Millennium Seed Bank [J]. Plant Diversity, 2019, 41(02): 124-131. |
[11] | Guopeng Zhang, Lihua Meng, Zhikun Wu, Zhiqiang Zhang, Lingjuan Yin, Yongping Yang, Yuanwen Duan. Natural selection on floral traits of Caltha scaposa (Ranunculaceae), an alpine perennial with generalized pollination system from Northwest Yunnan [J]. Plant Diversity, 2017, 39(04): 202-207. |
[12] | MENG Ying-, YANG Yong-Ping. Chromosome Atlas of Eight Asteraceae Species from the Qinghai-Tibet Plateau [J]. Plant Diversity, 2013, 35(3): 361-366. |
[13] | WANG Guang-Yan-, MENG Ying-, NIE Ze-Long-, YANG Yong-Ping. Karyotypes of Five Leontopodium Species from the Southeastern QinghaiTibet Plateau, Southwest China [J]. Plant Diversity, 2013, 35(3): 355-360. |
[14] | WANG Dong-Chao-, WU Jie-, YANG Yong-Hong-, CHEN Jia-Hui-, YANG Yong-Ping. Intraspecific Variation of Leaf Epidermal Cuticle Waxes under Scanning Electronic Microscope:Stipa purpurea and Oxytropis microphylla from the QinghaiTibet Plateau [J]. Plant Diversity, 2013, 35(3): 348-354. |
[15] | SU Xu-, YUE Wei-, LIU Jian-Quan. Germplasm Collection and Preservation of Orinus (Poaceae) in the QinghaiTibet Plateau [J]. Plant Diversity, 2013, 35(3): 343-347. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||