Plant Diversity ›› 2025, Vol. 47 ›› Issue (05): 804-813.DOI: 10.1016/j.pld.2025.02.005
• Articles • Previous Articles Next Articles
Xing-Jiang Songa, Gang Liua,b,c, Xin-Di Lia, Yu Chena, Jia Wanga, Chun-Ling Zhanga, Xin-Ping Yea,b,c, Zhi-Hong Zhua,b,c
Received:
2024-09-30
Revised:
2025-02-14
Online:
2025-09-29
Published:
2025-09-29
Contact:
Gang Liu,E-mail:2003liugang@163.com
Supported by:
Xing-Jiang Songa, Gang Liua,b,c, Xin-Di Lia, Yu Chena, Jia Wanga, Chun-Ling Zhanga, Xin-Ping Yea,b,c, Zhi-Hong Zhua,b,c
通讯作者:
Gang Liu,E-mail:2003liugang@163.com
基金资助:
Xing-Jiang Song, Gang Liu, Xin-Di Li, Yu Chen, Jia Wang, Chun-Ling Zhang, Xin-Ping Ye, Zhi-Hong Zhu. Phylogenetically close alien Asteraceae species with minimal niche overlap are more likely to invade[J]. Plant Diversity, 2025, 47(05): 804-813.
Xing-Jiang Song, Gang Liu, Xin-Di Li, Yu Chen, Jia Wang, Chun-Ling Zhang, Xin-Ping Ye, Zhi-Hong Zhu. Phylogenetically close alien Asteraceae species with minimal niche overlap are more likely to invade[J]. Plant Diversity, 2025, 47(05): 804-813.
Aravind, N.A., Shaanker, M.U., Bhat, H.N.P., et al., 2022. Niche shift in invasive species: is it a case of “home away from home” or finding a “new home”? Biodivers. Conserv. 31, 2625-2638. Atwater, D.Z., Ervine, C., Barney, J.N., 2018. Climatic niche shifts are common in introduced plants. Nat. Ecol. Evol. 2, 34-43. Banerjee, A.K., Tan, F.X., Feng, H., et al., 2023. Invasive alien plants are phylogenetically distinct from other alien species across spatial and taxonomic scales in China. Front. Plant Sci. 14, 1075344. Barve, N., Barve, V., Jimenez-Valverde, A., et al., 2011. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 222, 1810-1819. Beaumont, L.J., Gallagher, R.V., Thuiller, W., et al., 2009. Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Divers. Distrib. 15, 409-420. Blackburn, T.M., Pysek, P., Bacher, S., et al., 2011. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333-339. Broennimann, O., Fitzpatrick, M.C., Pearman, P.B., et al., 2012. Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecol. Biogeogr. 21, 481-497. Broennimann, O., Mraz, P., Petitpierre, B., et al., 2014. Contrasting spatio-temporal climatic niche dynamics during the eastern and western invasions of spotted knapweed in North America. J. Biogeogr. 41, 1126-1136. Broennimann, O., Treier, U.A., Muller-Scharer, H., et al., 2007. Evidence of climatic niche shift during biological invasion. Ecol. Lett. 10, 701-709. Calixto-Rojas, M., Lira-Noriega, A., Rubio-Godoy, M., et al., 2021. Phylogenetic relationships and ecological niche conservatism in killifish (Profundulidae) in Mesoamerica. J. Fish. Biol. 99, 396-410. Callen, S.T., Miller, A.J., 2015. Signatures of niche conservatism and niche shift in the North American kudzu (Pueraria montana) invasion. Divers. Distrib. 21, 853-863. Chamberlain, S., 2017. Rgbif: interface to the global biodiversity information facility API. R package version 0.9.8. https://CRAN.R-project.org/package=rgbif. Cooper, N., Freckleton, R.P., Jetz, W., 2011. Phylogenetic conservatism of environmental niches in mammals. Proc. R. Soc. B-Biol. Sci. 278, 2384-2391. Cornuault, J., Khimoun, A., Cuneo, P., et al., 2015. Spatial segregation and realized niche shift during the parallel invasion of two olive subspecies in south-eastern Australia. J. Biogeogr. 42, 1930-1941. Crisp, M.D., Cook, L.G., 2012. Phylogenetic niche conservatism: what are the underlying evolutionary and ecological causes? New Phytol. 196, 681-694. Crowl, T.A., Crist, T.O., Parmenter, R.R., et al., 2008. The spread of invasive species and infectious disease as drivers of ecosystem change. Front. Ecol. Environ. 6, 238-246. Daehler, C.C., 2001. Darwin's naturalization hypothesis revisited. Am. Nat. 158, 324-330. Davis, M.A., Grime, J.P., Thompson, K., 2000. Fluctuating resources in plant communities: a general theory of invisibility. J. Ecol. 88, 528-534. Di Cola, V., Broennimann, O., Petitpierre, B., et al., 2017. Ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774-787. Diez, J.M., Sullivan, J.J., Hulme, P.E., et al., 2008. Darwin's naturalization conundrum: dissecting taxonomic patterns of species invasions. Ecol. Lett. 11, 674-681. Diez, J.M., Williams, P.A., Randall, R.P., et al., 2009. Learning from failures: testing broad taxonomic hypotheses about plant naturalization. Ecol. Lett. 12, 1174-1183. Diniz, J.A.F., Soares, T.N., Lima, J.S., et al., 2013. Mantel test in population genetics. Genet. Mol. Biol. 36, 475-485. Dray, S., Dufour, A.-B., 2007. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Software 22, 1-20. Duncan, R.P., Williams, P.A., 2002. Darwin's naturalization hypothesis challenged. Nature 417, 608-609. Escobedo, V.M., Aranda, J.E., Castro, S.A., 2011. Hipotesis de Naturalizacion de Darwin evaluada en la flora exotica de Chile continental. Rev. Chil. Hist. Nat. 84, 543-552. Fan, S.Y., Yang, Q., Li, S.P., et al., 2023. A latitudinal gradient in Darwin's naturalization conundrum at the global scale for flowering plants. Nat. Commun. 14, 6244. Ferreira, R.B., Beard, K.H., Peterson, S.L., et al., 2012. Establishment of introduced reptiles increases with the presence and richness of native congeners. Amphibia-Reptilia 33, 387-392. Fick, S.E., Hijmans, R.J., 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302-4315. Flora of China Editorial Committee, 2011. Flora of China. Volume vols. 20-21: Asteraceae. Beijing:Science Press. Gallien, L., Douzet, R., Pratte, S., et al., 2012. Invasive species distribution models-how violating the equilibrium assumption can create new insights. Global Ecol. Biogeogr. 21, 1126-1136. GBIF, 2022. Global biodiversity information facility (GBIF) (26 October 2022) GBIF occurrence download. https://doi.org/10.15468/dl.73ap5k. Gioria, M., Hulme, P.E., Richardson, D.M., et al., 2023. Why are invasive plants successful? Annu. Rev. Plant Biol. 74, 635-670. Guidetti, R., Altiero, T., Rebecchi, L., 2011. On dormancy strategies in tardigrades. J. Insect Physiol. 57, 567-576. Guisan, A., Petitpierre, B., Broennimann, O., et al., 2014. Unifying niche shift studies: insights from biological invasions. Trends Ecol. Evol. 29, 260-269. Hao, Q., Ma, J.S., 2023. Invasive alien plants in China: an update. Plant Divers. 45, 117-121. Holt, R.D., 2009. Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proc. Natl. Acad. Sci. U.S.A. 106, 19659-19665. Jin, Y., Qian, H., 2019. V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353-1359. Jin, Y., Qian, H., 2022. V.PhyloMaker2: an updated and enlarged R package that can generate very large phylogenies for vascular plants. Plant Divers. 44, 335-339. Jin, Y., Qian, H., 2023. U.PhyloMaker: an R package that can generate large phylogenetic trees for plants and animals. Plant Divers. 45, 347-352. Karger, D.N., Conrad, O., Bohner, J., et al., 2017. Climatologies at high resolution for the earth's land surface areas. Sci. Data 4, 1-20. Lami, F., Vitti, S., Marini, L., et al., 2021. Habitat type and community age as barriers to alien plant invasions in coastal species-habitat networks. Ecol. Indic. 133, 108450. Legendre, P., Fortin, M.J., 2010. Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Mol. Ecol. Resour. 10, 831-844. Li, S.P., Cadotte, M.W., Meiners, S.J., et al., 2015. The effects of phylogenetic relatedness on invasion success and impact: deconstructing Darwin's naturalisation conundrum. Ecol. Lett. 18, 1285-1292. Li, X.D., Chen, Y., Zhang, C.L., et al., 2024. Assessing the climatic niche changes and global invasion risk of Solanum elaeagnifolium in relation to human activities. Sci. Total Environ. 954, 176723. Lin, Q.W., Xiao, C., Ma, J.S., 2022. A dataset on catalogue of alien plants in China. Biodivers. Sci. 30, 22127. Liu, C.L., Wolter, C., Xian, W.W., et al., 2020. Most invasive species largely conserve their climatic niche. Proc. Natl. Acad. Sci. U.S.A. 117, 23643-23651. Liu, D.J., Semenchuk, P., Essl, F., et al., 2023a. The impact of land use on non-native species incidence and number in local assemblages worldwide. Nat. Commun. 14, 2090. Liu, Y.P., Heberling, J.M., Wang, Z.H., et al., 2023b. Niche unfilling dominates the naturalization of species from intercontinentally disjunct genera. Global Ecol. Biogeogr. 32, 1977-1990. Lo Parrino, E., Falaschi, M., Manenti, R., et al., 2023. All that changes is not shift: methodological choices influence niche shift detection in freshwater invasive species. Ecography 2023, e06432. Losos, J.B., 2008. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol. Lett. 11, 995-1003. Mack, R.N., Lonsdale, W.M., 2001. Humans as global plant dispersers: Getting more than we bargained for. Bioscience 51, 95-102. Manzoor, S.A., Griffiths, G., Obiakara, M.C., et al., 2020. Evidence of ecological niche shift in Rhododendron ponticum (L.) in Britain: hybridization as a possible cause of rapid niche expansion. Ecol. Evol. 10, 2040-2050. Mazel, F., Davies, T.J., Gallien, L., et al., 2016. Influence of tree shape and evolutionary time-scale on phylogenetic diversity metrics. Ecography 39, 913-920. Mazzolari, A.C., Marrero, H.J., Vazquez, D.P., 2017. Potential contribution to the invasion process of different reproductive strategies of two invasive roses. Biol. Invasions 19, 615-623. Mounger, J., Ainouche, M.L., Bossdorf, O., et al., 2021. Epigenetics and the success of invasive plants. Phil. Trans. Biol. Sci. 376, 20200117. Nota, A., Bertolino, S., Tiralongo, F., et al., 2024. Adaptation to bioinvasions: when does it occur? Glob. Change Biol. 30, e17362. Oliveira, B.F., Costa, G.C., Fonseca, C.R., 2018. Niche dynamics of two cryptic Prosopis invading South American drylands. Biol. Invasions 20, 181-194. Park, D.S., Feng, X., Maitner, B.S., et al., 2020. Darwin's naturalization conundrum can be explained by spatial scale. Proc. Natl. Acad. Sci. U.S.A. 117, 10904-10910. Park, D.S., Potter, D., 2015. Why close relatives make bad neighbours: phylogenetic conservatism in niche preferences and dispersal disproves Darwin's naturalization hypothesis in the thistle tribe. Mol. Ecol. 24, 3181-3193. Peixoto, F.P., Villalobos, F., Cianciaruso, M.V., 2017. Phylogenetic conservatism of climatic niche in bats. Global Ecol. Biogeogr. 26, 1055-1065. Perret, D.L., Leslie, A.B., Sax, D.F., 2019. Naturalized distributions show that climatic disequilibrium is structured by niche size in pines (Pinus L.). Global Ecol. Biogeogr. 28, 429-441. Peterson, A.T., 2011. Ecological niche conservatism: a time-structured review of evidence. J. Biogeogr. 38, 817-827. Peterson, A.T., Vieglais, D.A., 2001. Predicting species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem: a new approach to ecological niche modeling, based on new tools drawn from biodiversity informatics, is applied to the challenge of predicting potential species’ invasions. BioScience 51, 363–371. Petitpierre, B., Kueffer, C., Broennimann, O., et al., 2012. Climatic niche shifts are rare among terrestrial plant invaders. Science 335, 1344-1348. Petrosyan, V.G., Osipov, F.A., Feneva, I.Y., et al., 2023. Ecological niches modelling of the top-100 most dangerous invasive species in Russia: testing the hypothesis of ecological niche conservatism. Biol. Bull. 50, S63-S84. Pysek, P., Hulme, P.E., Simberloff, D., et al., 2020. Scientists' warning on invasive alien species. Biol. Rev. 95, 1511-1534. Qian, H., 2023. Patterns of phylogenetic relatedness of non-native plants across the introduction-naturalization-invasion continuum in China. Plant Divers. 45, 169-176. Qian, H., Jin, Y., 2021. Are phylogenies resolved at the genus level appropriate for studies on phylogenetic structure of species assemblages? Plant Divers. 43, 255-263. Qian, H., Qian, S.H., Sandel, B., 2022. Phylogenetic structure of alien and native species in regional plant assemblages across China: testing niche conservatism hypothesis versus niche convergence hypothesis. Global Ecol. Biogeogr. 31, 1864-1876. Qian, H., Sandel, B., 2017. Phylogenetic relatedness of native and exotic plants along climate gradients in California, USA. Divers. Distrib. 23, 1323-1333. Qian, H., Sandel, B., 2022. Darwin's preadaptation hypothesis and the phylogenetic structure of native and alien regional plant assemblages across North America. Global Ecol. Biogeogr. 31, 531-545. Qian, H., Zhang, J., 2024. Phylogenetic diversity and dispersion of angiosperms in plant communities along an elevational gradient in the western United States. J. Biogeogr. 52, 495-504. Qin, F., Han, B.C., Bussmann, R.W., et al., 2024. Present status, future trends, and control strategies of invasive alien plants in China affected by human activities and climate change. Ecography 2024, e06919. Regos, A., Gagne, L., Alcaraz-Segura, D., et al., 2019. Effects of species traits and environmental predictors on performance and transferability of ecological niche models. Sci. Rep. 9, 1-14. Rejmanek, M., 1996. A theory of seed plant invasiveness: the first sketch. Biol. Conserv. 78, 171-181. Ricciardi, A., Hoopes, M.F., Marchetti, M.P., et al., 2013. Progress toward understanding the ecological impacts of nonnative species. Ecol. Monogr. 83, 263-282. Richardson, D.M., Pysek, P., Rejmanek, M., et al., 2000. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 6, 93-107. Robeck, P., Essl, F., van Kleunen, M., et al., 2024. Invading plants remain undetected in a lag phase while they explore suitable climates. Nat. Ecol. Evol. 8, 477-488. Rohr, R.P., Scherer, H., Kehrli, P., et al., 2010. Modeling food webs: exploring unexplained structure using latent traits. Am. Nat. 176, 170-177. Santamarina, S., Mateo, R.G., Alfaro-Saiz, E., et al., 2023. On the importance of invasive species niche dynamics in plant conservation management at large and local scale. Front. Ecol. Evol. 10, 1049142. Santos, J.C., Cannatella, D.C., 2011. Phenotypic integration emerges from aposematism and scale in poison frogs. Proc. Natl. Acad. Sci. U.S.A. 108, 6175-6180. Schoener, T.W., 1970. Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology 51, 408-418. Sherpa, S., Despres, L., 2021. The evolutionary dynamics of biological invasions: a multi-approach perspective. Evol. Appl. 14, 1463-1484. Smith, S.A., Brown, J.W., 2018. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302-314. Soberon, J., 2007. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10, 1115-1123. Song, X.J., Liu, G., Qian, Z.Q., et al., 2023. Niche filling dynamics of ragweed (Ambrosia artemisiifolia L.) during global invasion. Plants 12, 1313. Thuiller, W., Gallien, L., Boulangeat, I., et al., 2010. Resolving Darwin's naturalization conundrum: a quest for evidence. Divers. Distrib. 16, 461-475. Thuiller, W., Richardson, D.M., Pysek, P., et al., 2005. Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob. Change Biol. 11, 2234-2250. Tingley, R., Vallinoto, M., Sequeira, F., et al., 2014. Realized niche shift during a global biological invasion. Proc. Natl. Acad. Sci. U.S.A. 111, 10233-10238. Tsirogiannis, C., Sandel, B., 2016. PhyloMeasures: a package for computing phylogenetic biodiversity measures and their statistical moments. Ecography 39, 709-714. Vaclavik, T., Meentemeyer, R.K., 2012. Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Divers. Distrib. 18, 73-83. Wang, J., Li, S.P., Ge, Y., et al., 2023. Darwin's naturalization conundrum reconciled by changes of species interactions. Ecology 104, e3850. Warren, D.L., Glor, R.E., Turelli, M., 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62, 2868-2883. Weber, E., Sun, S.G., Li, B., 2008. Invasive alien plants in China: diversity and ecological insights. Biol. Invasions 10, 1411-1429. Wiens, J.J., Graham, C.H., 2005. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519-539. Williamson, M., 2006. Explaining and predicting the success of invading species at different stages of invasion. Biol. Invasions 8, 1561-1568. Wilson, J.R.U., Richardson, D.M., Rouget, M., et al., 2007. Residence time and potential range: crucial considerations in modelling plant invasions. Divers. Distrib. 13, 11-22. Xu, M., Li, S.P., Dick, J.T.A., et al., 2022. Exotic fishes that are phylogenetically close but functionally distant to native fishes are more likely to establish. Glob. Change Biol. 28, 5683-5694. Yang, W.J., Sun, S.X., Wang, N.X., et al., 2023a. Dynamics of the distribution of invasive alien plants (Asteraceae) in China under climate change. Sci. Total Environ. 903, 166260. Yang, Y.B., Bian, Z.H., Ren, W.J., et al., 2023b. Spatial patterns and hotspots of plant invasion in China. Global Ecol. Conserv. 43, e02424. Zanne, A.E., Tank, D.C., Cornwell, W.K., et al., 2014. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89-92. Zhang, J., Qian, H., 2023. U.Taxonstand: an R package for standardizing scientific names of plants and animals. Plant Divers. 45, 1-5. Zhang, W.G., Chen, X.Y., Liu, R.L., et al., 2021. Realized niche shift associated with Galinsoga quadriradiata (Asteraceae) invasion in China. J. Plant Ecol. 15, 538-548. Zizka, A., Silvestro, D., Andermann, T., et al., 2019. CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 10, 744-751. |
[1] | Xian-Han Huang (黄先寒), Jing-Yi Peng (彭敬宜), Nan Lin (林楠), Jian Liu (刘健), Jun-Tong Chen (陈俊通), Qun Liu (刘群), Xin-Jian Zhang (张信坚), Quan-Sheng Fu (付全升), Peng-Rui Luo (罗芃睿), Zhi-Yu Wang (王治宇), Shiou Yih Lee, Qiang Zhou (周强), Hang Sun (孙航), Tao Deng (邓涛). Climatic niche divergence and long-distance dispersal contributed to the pantropical intercontinental disjunctions of a liana lineage (Uncaria, Rubiaceae) [J]. Plant Diversity, 2025, 47(05): 772-783. |
[2] | Zhaochen Zhang (张昭臣), Fang Wang (王芳), Xiaoran Wang (王潇然), Mufan Sun (孙慕梵), Pu Zheng (郑普), Jingchao Zhao (赵静超), Junhong Chen (陈俊红), Min Guan (关敏), Pengcheng Liu (刘鹏程), Xiaofan Shang (商晓凡), Yaoshun Lu (卢尧舜), Qingpei Yang (杨清培), Qingni Song (宋庆妮), Lin Chen (陈琳), Quying Zhong (钟曲颖), Jian Zhang (张健). Biogeographic affinity partly shapes woody plant diversity along an elevational gradient in subtropical forests [J]. Plant Diversity, 2025, 47(05): 784-792. |
[3] | Ibrokhimjon Ergashov, Ziyoviddin Yusupov, Alireza Dolatyari, Mina Khorasani, İsmail Eker, Nazgul Turdumatova, Georgy Lazkov, Farruhbek Rasulov, Hang Sun, Tao Deng, Komiljon Tojibaev. New insights into the molecular phylogeny and biogeographical history of Allium subgenus Melanocrommyum (Amaryllidaceae) based on plastome and nuclear sequences [J]. Plant Diversity, 2025, 47(04): 561-575. |
[4] | Fei-Fei Li, Qiang Hao, Xia Cui, Ruo-Zhu Lin, Bin-Sheng Luo, Jin-Shuang Ma. Global invasive alien plant management lists: Assessing current practices and adapting to new demands [J]. Plant Diversity, 2025, 47(04): 666-680. |
[5] | Lang Li (李朗), Bing Liu (刘冰), Yu Song (宋钰), Hong-Hu Meng (孟宏虎), Xiu-Qin Ci (慈秀芹), John G. Conran, Rogier P.J. de Kok, Pedro Luís Rodrigues de Moraes, Jun-Wei Ye (叶俊伟), Yun-Hong Tan (谭运洪), Zhi-Fang Liu (刘志芳), Marlien van der Merwe, Henk van der Werff, Yong Yang (杨永), Jens G. Rohwer, Jie Li (李捷). Global advances in phylogeny, taxonomy and biogeography of Lauraceae [J]. Plant Diversity, 2025, 47(03): 341-364. |
[6] | Qinfeng Guo, Hong Qian, Shenhua Qian. Climate space, traits, and the spread of nonnative plants in North America [J]. Plant Diversity, 2025, 47(02): 255-263. |
[7] | Xue Wang, Xinrui Liu, Shuang Chen, Jiang Zhu, Yanqi Yuan, Rong Zhu, Kaixi Chen, Xue Yang, Xiaochun Wang, Weiyi Mo, Ruili Wang, Shuoxin Zhang. Elevational variation in anatomical traits of the first-order roots and their adaptation mechanisms [J]. Plant Diversity, 2025, 47(02): 291-299. |
[8] | Hong Qian, Oriol Grau. Geographic patterns and ecological causes of phylogenetic structure in mosses along an elevational gradient in the central Himalaya [J]. Plant Diversity, 2025, 47(01): 98-105. |
[9] | Wei Gu, Ting Zhang, Shui-Yin Liu, Qin Tian, Chen-Xuan Yang, Qing Lu, Xiao-Gang Fu, Heather R. Kates, Gregory W. Stull, Pamela S. Soltis, Douglas E. Soltis, Ryan A. Folk, Robert P. Guralnick, De-Zhu Li, Ting-Shuang Yi. Phylogenomics, reticulation, and biogeographical history of Elaeagnaceae [J]. Plant Diversity, 2024, 46(06): 683-697. |
[10] | Hong Qian, Jian Wang, Shenhua Qian, Michael Kessler. Geographic patterns and climatic drivers of the mean genus age of liverworts in North America [J]. Plant Diversity, 2024, 46(06): 723-731. |
[11] | Miao Liu, Tiancai Zhou, Quansheng Fu. Leaf nitrogen and phosphorus are more sensitive to environmental factors in dicots than in monocots, globally [J]. Plant Diversity, 2024, 46(06): 804-811. |
[12] | Tao Zhou, Xiaodan Chen, Jordi López-Pujol, Guoqing Bai, Sonia Herrando-Moraira, Neus Nualart, Xiao Zhang, Yuemei Zhao, Guifang Zhao. Genetically-and environmentally-dependent processes drive interspecific and intraspecific divergence in the Chinese relict endemic genus Dipteronia [J]. Plant Diversity, 2024, 46(05): 585-599. |
[13] | Jun-Yi Zhang, Yue-Hong Cheng, Min Liao, Yu Feng, Sen-Long Jin, Ting-Mei He, Hai He, Bo Xu. A new infrageneric classification of Gastrochilus (Orchidaceae: Epidendroideae) based on molecular and morphological data [J]. Plant Diversity, 2024, 46(04): 435-447. |
[14] | Guillermo Bañares-de-Dios, Manuel J. Macía, Gabriel Arellano, Íñigo Granzow-de la Cerda, Julia Vega-Álvarez, Itziar Arnelas, Carlos I. Espinosa, Norma Salinas, Luis Cayuela. Woody plant taxonomic, functional, and phylogenetic diversity decrease along elevational gradients in Andean tropical montane forests: Environmental filtering and arrival of temperate taxa [J]. Plant Diversity, 2024, 46(04): 491-501. |
[15] | Fangbing Li, Hong Qian, Jordi Sardans, Dzhamal Y. Amishev, Zixuan Wang, Changyue Zhang, Tonggui Wu, Xiaoniu Xu, Xiao Tao, Xingzhao Huang. Evolutionary history shapes variation of wood density of tree species across the world [J]. Plant Diversity, 2024, 46(03): 283-293. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||