Agerer, R., 2001. Exploration types of ectomycorrhizae. Mycorrhiza 11(2): 107-114. Agerer, R., 2006. Fungal relationships and structural identity of their ectomycorrhizae. Mycol. Prog. 5(2): 67-107. Anthony, M.A., Crowther, T.W., van der Linde, S., et al., 2022. Forest tree growth is linked to mycorrhizal fungal composition and function across Europe. ISME J. 16(5): 1327-1336. Barker, W., Comita, L.S., Wright, S.J., et al., 2022. Widespread herbivory cost in tropical nitrogen-fixing tree species. Nature 612: 483-487. Beerling, D.J., Franks, P.J., 2010. Plant science: the hidden cost of transpiration. Nature 464(7288): 495-496. Bennett, A.E., Groten, K., 2022. The costs and benefits of plant-arbuscular mycorrhizal fungal interactions. Annu. Rev. Plant Biol. 73: 649-672. Bergmann, J., Weigelt, A., van der Plas, F., et al., 2020. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 6(27). Binkley, D., Stape, J.L., Takahashi, E.N., et al., 2006. Tree-girdling to separate root and heterotrophic respiration in two Eucalyptus stands in Brazil. Oecologia 148(3): 447-454. Bravo, A., Brands, M., Wewer, V., et al., 2017. Arbuscular mycorrhiza-specific enzymes FatM and RAM2 fine-tune lipid biosynthesis to promote development of arbuscular mycorrhiza. New Phytol. 214(4): 1631-1645. Brundrett, M.C., 2002. Coevolution of roots and mycorrhizas of land plants. New Phytol. 154(2): 275-304. Cao, Y., Sun, G., Zhai, X., et al., 2021. Genomic insights into the fast growth of paulownias and the formation of Paulownia witches' broom. Mol. Plant 14(10): 1668-1682. Carmona, C.P., Bueno, C.G., Toussaint, A., et al., 2021. Fine-root traits in the global spectrum of plant form and function. Nature 597(7878): 683-687. Chen, J., Zhang, H.Y., Liu, M.C., et al., 2022. Plant invasions facilitated by suppression of root nutrient acquisition rather than by disruption of mycorrhizal association in the native plant. Plant Divers 44(5): 499-504. Chen, L., Wang, M., Jiang, C., et al., 2021. Choices of ectomycorrhizal foraging strategy as an important mechanism of environmental adaptation in Faxon fir (Abies fargesii var. faxoniana). For. Ecol. Manag. 495: 119372. Chen, S., Zhou, Y., Chen, Y., et al., 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17): i884-i890. Clausing, S., Pena, R., Song, B., et al., 2021. Carbohydrate depletion in roots impedes phosphorus nutrition in young forest trees. New Phytol. 229(5): 2611-2624. Clausing, S., Polle, A., 2020. Mycorrhizal phosphorus efficiencies and microbial competition drive root P uptake. Front. For. Global Change 3: 54. Comas, L.H., Mueller, K.E., Taylor, L.L., et al., 2012. Evolutionary patterns and biogeochemical significance of angiosperm root traits. Int. J. Plant Sci. 173(6): 584-595. Courty, P.-E., Buee, M., Diedhiou, A.G., et al., 2010. The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biol. Biochem. 42(5): 679-698. Cullings, K., Ishkhanova, G., Henson, J., 2008. Defoliation effects on enzyme activities of the ectomycorrhizal fungus Suillus granulatus in a Pinus contorta (lodgepole pine) stand in Yellowstone National Park. Oecologia 158(1): 77-83. Danielsen, L., Lohaus, G., Sirrenberg, A., et al., 2013. Ectomycorrhizal colonization and diversity in relation to tree biomass and nutrition in a plantation of transgenic poplars with modified lignin biosynthesis. PLoS One 8 e59207. de Vries, F.T., Griffiths, R.I., Bailey, M., et al., 2018. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 9(1): 3033. Ding, J., Yin, H., Kong, D., et al., 2023. Precipitation, rather than temperature drives coordination of multidimensional root traits with ectomycorrhizal fungi in alpine coniferous forests. J. Ecol. 111(9): 1935-1949. Doughty, C.E., Cheesman, A.W., Riutta, T., et al., 2020. Predicting tropical tree mortality with leaf spectroscopy. Biotropica 53(2): 581-595. Drigo, B., Pijl, A.S., Duyts, H., et al., 2010. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc. Natl. Acad. Sci. U. S. A. 107(24): 10938-10942. Edgar, R.C., 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10(10): 996-998. Eissenstat, D.M., Kucharski, J.M., Zadworny, M., et al., 2015. Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest. New Phytol. 208(1): 114-124. Fan, L., Wigneron, J.-P., Ciais, P., et al., 2022. Siberian carbon sink reduced by forest disturbances. Nat. Geosci. 16: 56-62. Fan, P., Guo, D., 2010. Slow decomposition of lower order roots: a key mechanism of root carbon and nutrient retention in the soil. Oecologia 163(2): 509-515. Fernandez, C.W., Mielke, L.A., Stefanski, A., et al., 2023. Climate change-induced stress disrupts ectomycorrhizal interaction networks at the boreal-temperate ecotone. Proc. Natl. Acad. Sci. U. S. A. 120: e2221619120. Finlay, R.D., 2008. Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J. Exp. Bot. 59(5): 1115-1126. Gamper, H., Hartwig, U.A., Leuchtmann, A., 2005. Mycorrhizas improve nitrogen nutrition of Trifolium repens after 8 yr of selection under elevated atmospheric CO2 partial pressure. New Phytol. 167(2): 531-542. Gardes, M., Bruns, T., 2008. ITS Primers with enhanced specificity for Basidiomycetes - application to the identification of mycorrhizae and rusts. Nat. Geosci. 2: 113-118. Genre, A., Lanfranco, L., Perotto, S., et al., 2020. Unique and common traits in mycorrhizal symbioses. Nat. Rev. Microbiol. 18(11): 649-660. Grabherr, M.G., Haas, B.J., Yassour, M., et al., 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29(7): 644-652. Guo, D., Xia, M., Wei, X., et al., 2008. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytol. 180(3): 673-683. Guo, D.L., Mitchell, R.J., Hendricks, J.J., 2004. Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. Oecologia 140(3): 450-457. Guo, W., Ding, J., Wang, Q., et al., 2021. Soil fertility controls ectomycorrhizal mycelial traits in alpine forests receiving nitrogen deposition. Soil Biol. Biochem. 161: 108386. Han, M., Feng, J., Chen, Y., et al., 2021. Mycorrhizal mycelial respiration: a substantial component of soil respired CO2. Soil Biol. Biochem. 163: 108454. Han, M., Zhang, H., Liu, M., et al., 2024. Increased dependence on nitrogen-fixation of a native legume in competition with an invasive plant. Plant Divers 46(4): 510-518. Hernandez, D.J., David, A.S., Menges, E.S., et al., 2021. Environmental stress destabilizes microbial networks. ISME J. 15(6): 1722-1734. Hobbie, E.A., 2006. Carbon allocation to ectomycorrhizal fungi correlates with belowground allocation in culture studies. Ecology 87(3): 563-569. Hogberg, P., Nordgren, A., Buchmann, N., et al., 2001. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411(6839): 789-792. Hou, S., Thiergart, T., Vannier, N., et al., 2021. A microbiota-root-shoot circuit favours Arabidopsis growth over defence under suboptimal light. Nat. Plants 7(8): 1078-1092. Jiang, Y., Wang, W., Xie, Q., et al., 2017. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356(6343): 1172-1175. Johnson, D.W., Edwards, N.T., 1979. The effects of stem girdling on biogeochemical cycles within a mixed deciduous forest in eastern Tennessee: II. Soil nitrogen mineralization and nitrification rates. Oecologia 40(3): 259-271. Kiers, E.T., Duhamel, M., Beesetty, Y., et al., 2011. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333(6044): 880-882. Kong, D., Ma, C., Zhang, Q., et al., 2014. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytol. 203(3): 863-872. Korkama, T., Fritze, H., Pakkanen, A., et al., 2007. Interactions between extraradical ectomycorrhizal mycelia, microbes associated with the mycelia and growth rate of Norway spruce (Picea abies) clones. New Phytol. 173(4): 798-807. Kramer-Walter, K.R., Bellingham, P.J., Millar, T.R., et al., 2016. Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum. J. Ecol. 104(5): 1299-1310. Kuikka, K., Harma, E., Markkola, A., et al., 2003. Severe defoliation of Scots Pine reduces reproductive investment by ectomycorrhizal symbionts. Ecology 84(8): 2051-2061. Lekberg, Y., Gibbons, S.M., Rosendahl, S., et al., 2013. Severe plant invasions can increase mycorrhizal fungal abundance and diversity. ISME J. 7(7): 1424-1433. Lindahl, B.D., Ihrmark, K., Boberg, J., et al., 2007. Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol. 173(3): 611-620. Liu, S., Garcia-Palacios, P., Tedersoo, L., et al., 2022. Phylotype diversity within soil fungal functional groups drives ecosystem stability. Nat. Ecol. Evol. 6(7): 900-909. Luginbuehl, L.H., Menard, G.N., Kurup, S., et al., 2017. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 356(6343): 1175-1178. Makita, N., Hirano, Y., Dannoura, M., et al., 2009. Fine root morphological traits determine variation in root respiration of Quercus serrata. Tree Physiol. 29(4): 579-585. Martin, F.M., Uroz, S., Barker, D.G., 2017. Ancestral alliances: plant mutualistic symbioses with fungi and bacteria. Science 356(6340): eaad4501. Martin, F.M., van der Heijden, M.G.A., 2024. The mycorrhizal symbiosis: research frontiers in genomics, ecology, and agricultural application. New Phytol. 242(4): 1486-1506. Mc, G.T., Miller, M.H., Evans, D.G., et al., 1990. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol. 115(3): 495-501. Nguyen, N.H., Song, Z., Bates, S.T., et al., 2016. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20: 241-248. O’Leary, M.H., 1982. Phosphoenolpyruvate carboxylase: an enzymologist’s view. Annu. Rev. Plant Physiol. 33(1): 297-315. Parker, T.C., Sadowsky, J., Dunleavy, H., et al., 2017. Slowed biogeochemical cycling in sub-arctic birch forest linked to reduced mycorrhizal growth and community change after a defoliation event. Ecosystems 20(2): 316-330. Pena, R., Offermann, C., Simon, J., et al., 2010. Girdling affects ectomycorrhizal fungal (EMF) diversity and reveals functional differences in EMF community composition in a beech forest. Appl. Environ. Microbiol. 76(6): 1831-1841. Peng, S., Eissenstat, D.M., Graham, J.H., et al., 1993. Growth depression in mycorrhizal citrus at high-phosphorus supply (analysis of carbon costs). Plant Physiol. 101(3): 1063-1071. Phillips, L.A., Ward, V., Jones, M.D., 2014. Ectomycorrhizal fungi contribute to soil organic matter cycling in sub-boreal forests. ISME J. 8(3): 699-713. Phillips, R.P., Erlitz, Y., Bier, R., et al., 2008. New approach for capturing soluble root exudates in forest soils. Funct. Ecol. 22(6): 990-999. Pregitzer, K.S., DeForest, J.L., Burton, A.J., et al., 2002. Fine root architecture of nine north American trees. Ecol. Monogr. 72(2): 293-309. Raven, J.A., Lambers, H., Smith, S.E., et al., 2018. Costs of acquiring phosphorus by vascular land plants: patterns and implications for plant coexistence. New Phytol. 217(4): 1420-1427. Rich, M.K., Vigneron, N., Libourel, C., et al., 2021. Lipid exchanges drove the evolution of mutualism during plant terrestrialization. Science 372(6544): 864-868. Rillig, M.C., Field, C.B., Allen, M.F., 1999. Soil biota responses to long-term atmospheric CO2 enrichment in two California annual grasslands. Oecologia 119(4): 572-577. Rygiewicz, P.T., Andersen, C.P., 1994. Mycorrhizae alter quality and quantity of carbon allocated below ground. Nature 369(6475): 58-60. Saikkonen, K., Ahonen-Jonnarth, U., Markkola, A.M., et al., 1999. Defoliation and mycorrhizal symbiosis: a functional balance between carbon sources and below-ground sinks. Ecol. Lett. 2(1): 19-26. Schneider, H.M., Wojciechowski, T., Postma, J.A., et al., 2017. Root cortical senescence decreases root respiration, nutrient content and radial water and nutrient transport in barley. Plant Cell Environ. 40(8): 1392-1408. Stubbins, A., Spencer, R.G.M., Mann, P.J., et al., 2015. Utilizing colored dissolved organic matter to derive dissolved black carbon export by arctic rivers. Front. Earth Sci. 3. Sun, L., Ataka, M., Han, M., et al., 2021. Root exudation as a major competitive fine-root functional trait of 18 coexisting species in a subtropical forest. New Phytol. 229(1): 259-271. Sun, L., Ataka, M., Kominami, Y., et al., 2017a. Relationship between fine-root exudation and respiration of two Quercus species in a Japanese temperate forest. Tree Physiol. 37(8): 1011-1020. Sun, L., Kominami, Y., Yoshimura, K., et al., 2017b. Root-exudate flux variations among four co-existing canopy species in a temperate forest, Japan. Ecol. Res. 32(3): 331-339. Tanikawa, T., Fujii, S., Sun, L., et al., 2018. Leachate from fine root litter is more acidic than leaf litter leachate: a 2.5-year laboratory incubation. Sci. Total Environ. 645 179-191. Tedersoo, L., Bahram, M., Zobel, M., 2020. How mycorrhizal associations drive plant population and community biology. Science 367(6480). Tedersoo, L., Smith, M.E., 2013. Lineages of ectomycorrhizal fungi revisited: foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biol. Rev. 27(3-4): 83-99. Tennant, D., 1975. A test of a modified Line Intersect Method of estimating root length. J. Ecol. 63(3). Terrer, C., Vicca, S., Stocker, B.D., et al., 2018. Ecosystem responses to elevated CO2 governed by plant-soil interactions and the cost of nitrogen acquisition. New Phytol. 217(2): 507-522. Teste, F.P., Veneklaas, E.J., Dixon, K.W., et al., 2014. Complementary plant nutrient-acquisition strategies promote growth of neighbour species. Funct. Ecol. 28(4): 819-828. Tjoelker, M.G., Oleksyn, J., Reich, P.B., 2001. Modelling respiration of vegetation: evidence for a general temperature-dependent Q10. Glob. Change Biol. 7(2): 223-230. Trocha, L.K., Mucha, J., Eissenstat, D.M., et al., 2010. Ectomycorrhizal identity determines respiration and concentrations of nitrogen and non-structural carbohydrates in root tips: a test using Pinus sylvestris and Quercus robur saplings. Tree Physiol. 30(5): 648-654. van Galen, L.G., Orlovich, D.A., Lord, J.M., et al., 2023. Correlated evolution in an ectomycorrhizal host-symbiont system. New Phytol. 238(3): 1215-1229. Ven, A., Verlinden, M.S., Verbruggen, E., et al., 2019. Experimental evidence that phosphorus fertilization and arbuscular mycorrhizal symbiosis can reduce the carbon cost of phosphorus uptake. Funct. Ecol. 33(11): 2215-2225. Wallander, H., Johansson, U., Sterkenburg, E., et al., 2010. Production of ectomycorrhizal mycelium peaks during canopy closure in Norway spruce forests. New Phytol. 187(4): 1124-1134. Wang, Q., Garrity, G.M., Tiedje, J.M., et al., 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73(16): 5261-5267. Wang, M., Kong, D., Mo, X., et al., 2024. Molecular-level carbon traits underlie the multidimensional fine root economics space. Nat. Plants 10, 901–909. Wang, X., Liu, X., Chen, S., et al., 2025. Elevational variation in anatomical traits of the first-order roots and their adaptation mechanisms. Plant Divers 47, 291–299. Wang, R., Lu, J., Jiang, Y., et al., 2022. Carbon efficiency for nutrient acquisition (CENA) by plants: role of nutrient availability and microbial symbionts. Plant Soil 476(1-2): 289-300. Wang, X., Zhang, Q., Zhang, Z., et al., 2023. Decreased soil multifunctionality is associated with altered microbial network properties under precipitation reduction in a semiarid grassland. iMeta 2(2): e106. Wasyliw, J., Karst, J., Heijden, M., 2020. Shifts in ectomycorrhizal exploration types parallel leaf and fine root area with forest age. J. Ecol. 108(6): 2270-2282. White, T.J., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Prot.: Guide Method. Appl. 31, pp 315-322. Withington, J.M., Reich, P.B., Oleksyn, J., et al., 2006. Comparisons of structure and life span in roots and leaves among temperate trees. Ecol. Monogr. 76(3): 381-397. Wu, L., Zhang, Y., Guo, X., et al., 2022. Reduction of microbial diversity in grassland soil is driven by long-term climate warming. Nat. Microbiol. 7(7): 1054-1062. Xie, L., Yang, Y., Ma, J., et al., 2024. Variations in ectomycorrhizal exploration types parallel seedling fine root traits of two temperate tree species under extreme drought and contrasting solar radiation treatments. Plant Cell Environ. 47(12): 5053-5066. Yuan, M., Guo, X., Wu, L., et al., 2021. Climate warming enhances microbial network complexity and stability. Nat. Clim. Change 11(4): 343-348. Zhai, C., Han, L., Xiong, C., et al., 2024. Soil microbial diversity and network complexity drive the ecosystem multifunctionality of temperate grasslands under changing precipitation. Sci. Total Environ. 906: 167217. Zhang, Y., Cao, J.-J., Yang, Q.-P., et al., 2023. The worldwide allometric relationship in anatomical structures for plant roots. Plant Divers 45(6): 621-629. Zhang, Y., Cao, J., Lu, M., et al., 2024. The origin of bi-dimensionality in plant root traits. Trends Ecol. Evol. 39(1): 78-88. |