Plant Diversity ›› 2019, Vol. 41 ›› Issue (03): 206-211.DOI: 10.1016/j.pld.2019.04.003
• Articles • Previous Articles
Supriyo Basaka,d, Ramesh Aadi Moolama, Ajay Paridab, Sudip Mitrac, Latha Rangana
Received:
2018-09-27
Revised:
2019-04-09
Online:
2019-08-15
Published:
2019-06-25
Contact:
Latha Rangan,E-mail addresses:latha_rangan@yahoo.com,lrangan@iitg.ac.in
Supported by:
Supriyo Basaka,d, Ramesh Aadi Moolama, Ajay Paridab, Sudip Mitrac, Latha Rangana
通讯作者:
Latha Rangan,E-mail addresses:latha_rangan@yahoo.com,lrangan@iitg.ac.in
基金资助:
Supriyo Basak, Ramesh Aadi Moolam, Ajay Parida, Sudip Mitra, Latha Rangan. Evaluation of rapid molecular diagnostics for differentiating medicinal Kaempferia species from its adulterants[J]. Plant Diversity, 2019, 41(03): 206-211.
Supriyo Basak, Ramesh Aadi Moolam, Ajay Parida, Sudip Mitra, Latha Rangan. Evaluation of rapid molecular diagnostics for differentiating medicinal Kaempferia species from its adulterants[J]. Plant Diversity, 2019, 41(03): 206-211.
优势种 Dominant species | 放牧样地 Grazing site | 割草样地 Mowing site | 围封样地 Grazing- exclusion site |
---|---|---|---|
冷蒿 Artemisia frigida | 0.06 ± 0.01 | 0.16 ± 0.07 | 0.11 ± 0.08 |
羊草 Leymus chinensis | 0.22 ± 0.05 | 0.14 ± 0.04 | 0.08 ± 0.12 |
大针茅 Stipa grandis | 0.15 ± 0.08 | 0.10 ± 0.02 | 0.07 ± 0.08 |
Table 1 Importance value of dominant species under three land use types (mean ± SE, n = 5)
优势种 Dominant species | 放牧样地 Grazing site | 割草样地 Mowing site | 围封样地 Grazing- exclusion site |
---|---|---|---|
冷蒿 Artemisia frigida | 0.06 ± 0.01 | 0.16 ± 0.07 | 0.11 ± 0.08 |
羊草 Leymus chinensis | 0.22 ± 0.05 | 0.14 ± 0.04 | 0.08 ± 0.12 |
大针茅 Stipa grandis | 0.15 ± 0.08 | 0.10 ± 0.02 | 0.07 ± 0.08 |
样地 Site | pH | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 全硫 Total sulfur (g·kg-1) | 有机质 Organic matter (g·kg-1) |
---|---|---|---|---|---|
放牧 Grazing | 7.51 ± 0.17 | 1.50 ± 0.19 | 0.15 ± 0.01 | 0.11 ± 0.09 | 16.49 ± 3.73 |
割草 Mowing | 6.91 ± 0.08 | 1.20 ± 0.05 | 0.37 ± 0.25 | 0.04 ± 0.00 | 21.30 ± 2.74 |
围封 Grazing-exclusion | 7.78 ± 0.06 | 1.06 ± 0.06 | 0.12 ± 0.01 | 0.02 ± 0.01 | 15.36 ± 2.29 |
Table 2 Soil properties under three land use types (mean ± SE, n = 5)
样地 Site | pH | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 全硫 Total sulfur (g·kg-1) | 有机质 Organic matter (g·kg-1) |
---|---|---|---|---|---|
放牧 Grazing | 7.51 ± 0.17 | 1.50 ± 0.19 | 0.15 ± 0.01 | 0.11 ± 0.09 | 16.49 ± 3.73 |
割草 Mowing | 6.91 ± 0.08 | 1.20 ± 0.05 | 0.37 ± 0.25 | 0.04 ± 0.00 | 21.30 ± 2.74 |
围封 Grazing-exclusion | 7.78 ± 0.06 | 1.06 ± 0.06 | 0.12 ± 0.01 | 0.02 ± 0.01 | 15.36 ± 2.29 |
Adyanthaya, A., Ismail, S., Sreelakshmi, N., 2016. Indian traditional medicinal herbs against dental caries e an unsung past to a bright future. Saudi J. Oral Dental Res. 1 (1), 1-6.<br>Barrett, C.F., Specht, C.D., Leebens-Mack, J., Stevenson, D.W., Zomlefer, W.B., Davis, J.I., 2014. Resolving ancient radiations:can complete plastid gene sets elucidate deep relationships among the tropical gingers (Zingiberales)? Ann.Bot. 113, 119-133.<br>Basak, S., Krishnamurthy, H., Rangan, L., 2018. Genome size variation among 3 selected genera of Zingiberoideae. Meta Gene 15, 42-49.<br>Carlsen, M.M., Fer, T., Schmickl, R., Leong-Skornickova, J., Newman, M., Kress, W.J., 2018. Resolving the rapid plant radiation of early diverging lineages in the tropical Zingiberales:pushing the limits of genomic data. Mol. Phylogenet. Evol. 128, 55-68.<br>CBOL Plant Working Group, 2009. A DNA barcode for land plants. Proc. Natl. Acad.Sci. Unit. States Am. 106, 12794-12797.<br>Chen, J., Zhao, J., Erickson, D.L., Xia, N., Kress, W.J., 2015. Testing DNA barcodes in closely related species of Curcuma (Zingiberaceae) from Myanmar and China.Mol. Ecol. Resour. 15, 337-348.<br>Fazekas, A.J., Burgess, K.S., Kesanakurti, P.R., et al., 2008. Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLoS One 3, 2802.<br>Hollingsworth, P.M., 2008. DNA barcoding plants in biodiversity hot spots:progress and outstanding questionsⅢ. Heredity 101, 1-2.<br>Kearse, M., Moir, R., Wilson, A., et al., 2012. Geneious Basic:an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647-1649.<br>Kress, W.J., Erickson, D.L., 2007. A two-locus global DNA barcode for land plants, the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS One 2, 508.<br>Kumar, N.N., Ruba, K., 2018. Identification of adulterants by pharmacognostic evaluation in selected medicinal plants. World J. Pharmaceut. Med. Res. 4 (2), 67-70.<br>Kumar, S., Kahlon, T., Chaudhary, S., 2011. A rapid screening foradulterants in olive oil using DNA barcodes. Food Chem. 127, 1335-1341.<br>Ley, A.C., Dauby, G., Köhler, J., Wypior, C., Röser, M., Hardy, O.J., 2014. Comparative phylogeography of eight herbs and lianas (Marantaceae) in central African rainforests. Front. Genet. 5, 403. https://doi.org/10.3389/fgene.2014.00403.<br>New, S.G., Grguic, M., Shanmughanadhan, D., Ramalingam, S., 2013. DNA barcoding detects contamination and substitution in North American herbal products. BMC Med. 11, 222-235.<br>Nopporncharoenkul, N., Chanmai, J., Jenjittikul, T., Anamthawat-Jónsson, K., Soontornchainaksaeng, P., 2017. Chromosome number variation and polyploidy in 19 Kaempferia (Zingiberaceae) taxa from Thailand and one species from Laos.J. Syst. Evol. 55, 466-476.<br>Parvathy, V.A., Swetha, V.P., Sheeja, T.E., Leela, N.K., Chompakam, B., Sasikumar, B., 2014. DNA barcoding to detect chilli adulteration in traded black pepper powder. Food Biotechnol. 28 (1), 25-40.<br>Piredda, R., Simeone, M., Attimonelli, M., et al., 2011. Prospects of barcoding the Italian wild dendroflora:oaks reveal severe limitations to tracking species identity. Mol. Ecol. Resour. 11, 72-83.<br>Preetha, T.S., Hemanthakumar, A.S., Krishnan, P.N., 2016. A comprehensive review of Kaempferia galanga L. (Zingiberaceae):a high sought medicinal plant in Tropical Asia. J. Med. Plant Stud. 4 (3), 270-276.<br>Rajashekhara, N., Sharma, P.P., 2010. A comparative study of efficacy of Tugaksheeree[Curcuma angustifolia Roxb. and Maranta arundinacea Linn.] in management of Amlapitta. Ayu 31 (4), 482-486.<br>Sasikumar, B., Swetha, V.P., Parvathy, V.A., Sheeja, T.E., 2016. Advances in adulteration and authenticity testing of herbs and spices. In:Downey, G. (Ed.), Advances in Food Authenticity Testing. Woodhead Publishing Series in Food Science, Technology and Nutrition, pp. 585-624.<br>Septyanti, C., Batubara, I., Rafi, M., 2016. HPLC fingerprint analysis combined with chemometrics for authentication of Kaempferia galanga from related species.Indones. J. Chem. 16 (3), 308-314.<br>Sereena, K., Prakashkumar, U., Remashree, B., 2011. Histochemical and phytochemical markers for the authentication of ayurvedic raw drug hallakam(Kaempferia rotunda) and its marketed adulterant. Int. J. Pharm. Sci. Res. 2 (11), 2952-2958.<br>Sharma, A.K., Mukhopadhyay, S., 1984. Feulgen microspectrophotometric estimation of nuclear DNA of species and varieties of three different genera of marantaceae, 93 (3), 337-347.<br>Sivarajan, V.V., Balachandran, I., 1994. Ayurvedic Drugs and Their Plant Sources.Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi.<br>Stoeckle, M.Y., Gamble, C.C., Kirpekar, R., et al., 2011. Commercial teas highlight plant DNA barcode identification successes and obstacles. Sci. Rep. 1, 42-49.<br>Suksathan, P., Gustafsson, M.H., Borchsenius, F., 2009. Phylogeny and generic delimitation of Asian Marantaceae. Bot. J. Linn. Soc. 159, 381-395.<br>Techaprasan, J., Klinbunga, S., Ngamriabsaku, C., Jenjittikul, T., 2010. Genetic variation of Kaempferia (Zingiberaceae) in Thailand based on chloroplast DNA (psbA-trnH and petA-psbJ) sequences. Genet. Mol. Res. 9 (4), 1957-1973.<br>Vinitha, M.R., Kumar, U.S., Aishwarya, K., Sabu, M., Thomas, G., 2014. Prospects for discriminating Zingiberaceae species in India using DNA barcodes. J. Integr.Plant Biol. 56, 760-773. |
[1] | Ibrokhimjon Ergashov, Ziyoviddin Yusupov, Alireza Dolatyari, Mina Khorasani, İsmail Eker, Nazgul Turdumatova, Georgy Lazkov, Farruhbek Rasulov, Hang Sun, Tao Deng, Komiljon Tojibaev. New insights into the molecular phylogeny and biogeographical history of Allium subgenus Melanocrommyum (Amaryllidaceae) based on plastome and nuclear sequences [J]. Plant Diversity, 2025, 47(04): 561-575. |
[2] | Jieshi Tang, Xiaoyan Fan, Richard I. Milne, Heng Yang, Wenjing Tao, Xinran Zhang, Mengyun Guo, Jialiang Li, Kangshan Mao. Across two phylogeographic breaks: Quaternary evolutionary history of a mountain aspen (Populus rotundifolia) in the Hengduan Mountains [J]. Plant Diversity, 2024, 46(03): 321-332. |
[3] | Hai-Su Hu, Jiu-Yang Mao, Xue Wang, Yu-Ze Liang, Bei Jiang, De-Quan Zhang. Plastid phylogenomics and species discrimination in the “Chinese” clade of Roscoea (Zingiberaceae) [J]. Plant Diversity, 2023, 45(05): 523-534. |
[4] | Na Su, Richard G.J. Hodel, Xi Wang, Jun-Ru Wang, Si-Yu Xie, Chao-Xia Gui, Ling Zhang, Zhao-Yang Chang, Liang Zhao, Daniel Potter, Jun Wen. Molecular phylogeny and inflorescence evolution of Prunus (Rosaceae) based on RAD-seq and genome skimming analyses [J]. Plant Diversity, 2023, 45(04): 397-408. |
[5] | Shi-Yu Lv, Xia-Ying Ye, Zhong-Hu Li, Peng-Fei Ma, De-Zhu Li. Testing complete plastomes and nuclear ribosomal DNA sequences for species identification in a taxonomically difficult bamboo genus Fargesia [J]. Plant Diversity, 2023, 45(02): 147-155. |
[6] | Ying-Min Zhang, Li-Jun Han, Cong-Wei Yang, Zi-Li Yin, Xing Tian, Zi-Gang Qian, Guo-Dong Li. Comparative chloroplast genome analysis of medicinally important Veratrum (Melanthiaceae) in China: Insights into genomic characterization and phylogenetic relationships [J]. Plant Diversity, 2022, 44(01): 70-82. |
[7] | Hanqing Tang, Lu Tang, Shicheng Shao, Yulan Peng, Lu Li, Yan Luo. Chloroplast genomic diversity in Bulbophyllum section Macrocaulia (Orchidaceae, Epidendroideae, Malaxideae): Insights into species divergence and adaptive evolution [J]. Plant Diversity, 2021, 43(05): 350-361. |
[8] | Ziyoviddin Yusupov, Tao Deng, Sergei Volis, Furkat Khassanov, Dilmurod Makhmudjanov, Komiljon Tojibaev, Hang Sun. Phylogenomics of Allium section Cepa (Amaryllidaceae) provides new insights on domestication of onion [J]. Plant Diversity, 2021, 43(02): 102-110. |
[9] | Virginia M. Mwanzia, Ding-Xuan He, Andrew W. Gichira, Yan Li, Boniface K. Ngarega, Mwihaki J. Karichu, Peris W. Kamau, Zhi-Zhong Li. The complete plastome sequences of five Aponogeton species (Aponogetonaceae): Insights into the structural organization and mutational hotspots [J]. Plant Diversity, 2020, 42(05): 334-342. |
[10] | Kai-Wen Jiang, Rong Zhang, Zhong-Fu Zhang, Bo Pan, Bin Tian. DNA barcoding and molecular phylogeny of Dumasia (Fabaceae: Phaseoleae) reveals a cryptic lineage [J]. Plant Diversity, 2020, 42(05): 376-385. |
[11] | Siyue Xiao, Yunheng Ji, Jian Liu, Xun Gong. Genetic characterization of the entire range of Cycas panzhihuaensis (Cycadaceae) [J]. Plant Diversity, 2020, 42(01): 7-18. |
[12] | HE Wei-Ying-, PAN Yue-Zhi. Study on the DNA Barcoding of Genus Ligularia Cass. (Asteraceae) [J]. Plant Diversity, 2015, 37(06): 693-703. |
[13] | JIN Gui-Hua, CHEN Shi-Yun, YI Ting-Shuang, ZHANG Shu-Dong. Characterization of the Complete Chloroplast Genome of Apple (Malus × domestica, Rosaceae)* [J]. Plant Diversity, 2014, 36(04): 468-484. |
[14] | CHANG Yan-Fen, LI Jie, LU Shu-Gang, Harald Schneider. Systematic Position and Polyploid Origin of the Fern Asplenium kiangsuense (Aspleniaceae) [J]. Plant Diversity, 2014, 36(01): 7-12. |
[15] | CHEN Zhi-Duan-**, LI De-Zhu. On Barcode of Life and Tree of Life [J]. Plant Diversity, 2013, 35(6): 675-681. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||