Plant Diversity ›› 2023, Vol. 45 ›› Issue (05): 491-500.DOI: 10.1016/j.pld.2023.07.008
• Articles • Next Articles
Hong Qiana, Shenhua Qianb
Received:
2023-07-01
Revised:
2023-07-20
Online:
2023-11-04
Published:
2023-09-25
Contact:
Hong Qian,E-mail:hong.qian@illinoisstatemuseum.org
Hong Qiana, Shenhua Qianb
通讯作者:
Hong Qian,E-mail:hong.qian@illinoisstatemuseum.org
Hong Qian, Shenhua Qian. Geographic patterns of taxonomic and phylogenetic β-diversity of angiosperm genera in regional floras across the world[J]. Plant Diversity, 2023, 45(05): 491-500.
Hong Qian, Shenhua Qian. Geographic patterns of taxonomic and phylogenetic β-diversity of angiosperm genera in regional floras across the world[J]. Plant Diversity, 2023, 45(05): 491-500.
[1] Baselga, A., 2010. Partitioning the turnover and nestedness components of beta diversity. Global Ecol. Biogeogr. 19, 134-143. [2] Baselga, A., Orme, C.D., 2012. betapart: an R package for the study of beta diversity. Methods Ecol. Evol. 3, 808-812. [3] Brown, M.J.M., Walker, B.E., Black, N., et a., 2023. rWCVP: a companion R package for the World Checklist of Vascular Plants. New Phytol., doi: 10.1111/nph.18919. [4] Buckley, L.B., Jetz, W., 2008. Linking global turnover of species and environments. Proc. Natl. Acad. Sci. U.S.A. 105, 17836-17841. [5] Cassia-Silva, C., Freitas, C.G., Alves, D.M.C.C., et al., 2019. Niche conservatism drives a global discrepancy in palm species richness between seasonally dry and moist habitats. Global Ecol. Biogeogr. 28, 814-825. [6] Dixon, P., 2003. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927-930. [7] Dobrovolski, R., Melo, A.S., Cassemiro, F.A.S., et al., 2012. Climatic history and dispersal ability explain the relative importance of turnover and nestedness components of beta diversity. Global Ecol. Biogeogr. 21, 191-197. [8] Faith, D.P., 1992. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1-10. [9] Graham, C.H., Fine, P.V.A., 2008. Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time. Ecol. Lett. 11, 1265-1277. [10] Huang, X., Li, F., Wang, Z., et al., 2023. Are allometric model parameters of aboveground biomass for trees phylogenetically constrained? Plant Divers. 45, 229-233. [11] Ives, A.R., Helmus, M.R., 2010. Phylogenetic metrics of community similarity. Am. Nat. 176, E128-E142. [12] Jin, Y., Qian, H., 2019. V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353-1359. [13] Jin, Y., Qian, H., 2022. V.PhyloMaker2: An updated and enlarged R package that can generate very large phylogenies for vascular plants. Plant Divers. 44, 335-339. [14] Jin, Y., Qian, H., 2023. U.PhyloMaker: An R package that can generate large phylogenetic trees for plants and animals. Plant Divers. 45, 347-352. [15] Kembel, S.W., Cowan, P.D., Helmus, M.R., et al., 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463-1464. [16] Koleff, P., Gaston, K.J., Lennon, J.J., 2003. Measuring beta diversity for presence-absence data. J. Anim. Ecol. 72, 367–382. [17] Leprieur, F., Albouy, C., Bortoli, J.D., et al., 2012. Quantifying phylogenetic beta diversity: distinguishing between ‘true’ turnover of lineages and phylogenetic diversity gradients. PLoS One 7, e42760. [18] Liu, Y., Xu, X., Dimitrov, D., et al., 2023. An updated floristic map of the world. Nat. Commun. 14, 2990. [19] McFadden, I.R., Sandel, B., Tsirogiannis, C., et al., 2019. Temperature shapes opposing latitudinal gradients of plant taxonomic and phylogenetic ss diversity. Ecol. Lett. 22, 1126-1135. [20] McKnight, M.W., White, P.S., McDonald, R.I., et al., 2007. Putting beta-diversity on the map: broad-scale congruence and coincidence in the extremes. PLoS Biology 5, 2424-2432. [21] Nekola, J.C., White, P.S., 1999. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 26, 867-878. [22] Peixoto, F.P., Villalobos, F., Melo, A.S., et al., 2017. Geographical patterns of phylogenetic beta-diversity components in terrestrial mammals. Global Ecol. Biogeogr. 26, 573-583. [23] Pinto-Ledezma, J.N., Larkin, D.J., Cavender-Bares, J., 2018. Patterns of beta diversity of vascular plants and their correspondence with biome boundaries across North America. Front. Ecol. Evol. 6, 194. [24] Qian, H., 2023. Patterns of phylogenetic relatedness of non-native plants across the introduction-naturalization-invasion continuum in China. Plant Divers. 45, 169-176. [25] Qian, H., Swenson, N.G., Zhang, J., 2013. Phylogenetic beta diversity of angiosperms in North America. Global Ecol. Biogeogr. 22, 1152-1161. [26] Qian, H., Deng, T., Jin, Y., et al., 2019a. Phylogenetic dispersion and diversity in regional assemblages of seed plants in China. Proc. Natl. Acad. Sci. U.S.A. 116, 23192-23201. [27] Qian, H., Deng, T., Sun, H., 2019b. Global and regional tree species diversity. J. Plant Ecol. 12, 210-215. [28] Qian, H., Jin, Y., Leprieur, F., et al., 2020. Geographic patterns and environmental correlates of taxonomic and phylogenetic beta diversity for large-scale angiosperm assemblages in China. Ecography 43, 1706-1716. [29] Qian, H., Jin, Y., 2016. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233-239. [30] Qian, H., Jin, Y., 2021. Are phylogenies resolved at the genus level appropriate for studies on phylogenetic structure of species assemblages? Plant Divers. 43, 255-263. [31] Qian, H., Jin, Y., Leprieur, F., et al., 2021. Patterns of phylogenetic beta diversity measured at deep evolutionary histories across geographic and ecological spaces for angiosperms in China. J. Biogeogr. 48, 773-784. [32] Qian, H., Zhang, J., Zhao, J., 2022. How many known vascular plant species are there in the world? An integration of multiple global plant databases. Biodivers. Sci. 30, 22254. [33] Qian, H., Zhang, J., Jiang, M.-C., 2023. Global patterns of taxonomic and phylogenetic diversity of flowering plants: Biodiversity hotspots and coldspots. Plant Divers. 45, 265-271. [34] Smith, S.A., Brown, J.W., 2018. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302-314. [35] Stevens, G.C., 1989. The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am. Nat. 133, 240-256. [36] Swenson, N.G., 2011. Phylogenetic beta diversity metrics, trait evolution and inferring the functional beta diversity of communities. PLoS One 6, e21264. [37] Tsirogiannis, C., Sandel, B., 2016. PhyloMeasures: a package for computing phylogenetic biodiversity measures and their statistical moments. Ecography 39, 709-714. [38] Webb, C.O., Ackerly, D.D., Kembel, S.W., 2008. Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24, 2098-2100. [39] Whittaker, R.H., 1972. Evolution and measurement of species diversity. Taxon 21, 213-251. [40] Wilkinson, L., Hill, M., Welna, J. P., et al., 1992. SYSTAT for Windows: Statistics. SYSTAT, Inc., Evanston, IL. [41] Xu, W.-B., Guo, W.-Y., Serra-Diaz, J.M., et al., 2023. Global beta-diversity of angiosperm trees is shaped by Quaternary climate change. Sci. Adv. 9, eadd8553. [42] Yue, J., Li, R., 2021. Phylogenetic relatedness of woody angiosperm assemblages and its environmental determinants along a subtropical elevational gradient in China. Plant Divers. 43, 111-116. [43] Zhang, Y., Qian, L., Spalink, D., et al., 2021. Spatial phylogenetics of two topographic extremes of the Hengduan Mountains in southwestern China and its implications for biodiversity conservation. Plant Divers. 43, 181-191. [44] Zhou, Y.-D., Qian, H., Jin, Y., et al., 2023. Geographic patterns of taxonomic and phylogenetic ss-diversity of aquatic angiosperms in China. Plant Divers. 45, 177-184. |
[1] | Jie Li (李捷), Xiao Pan Pang (庞晓攀), Zheng Gang Guo (郭正刚). Assessing the contributions of site and species to plant beta diversity in alpine grassland ecosystems [J]. Plant Diversity, 2025, 47(04): 633-642. |
[2] | Yuxuan Jiang, Fuli Wu, Xiaomin Fang, Haitao Wang, Yulong Xie, Cuirong Yu. Effective palynological diversity indices for reconstructing angiosperm diversity in China [J]. Plant Diversity, 2025, 47(02): 244-254. |
[3] | Jianchao Liang, Zhifeng Ding, Ganwen Lie, Zhixin Zhou, Zhixiang Zhang, Huijian Hu. Climate-driven environmental filtering determines hump-shaped elevational pattern of seed plant beta diversity in the central Himalayas [J]. Plant Diversity, 2025, 47(02): 264-272. |
[4] | Yongli Wang, Yan-Da Li, Shuo Wang, Erik Tihelka, Michael S. Engel, Chenyang Cai. Modeling compositional heterogeneity resolves deep phylogeny of flowering plants [J]. Plant Diversity, 2025, 47(01): 13-20. |
[5] | Maochou Liu, Wenxiang Wu, Ke Wang, Xinshuai Ren, Xueqin Zhang, Lei Wang, Jing Geng, Bo Yang. Latitudinal patterns of tree β-diversity and relevant ecological processes vary across spatial extents in forests of southeastern China [J]. Plant Diversity, 2025, 47(01): 89-97. |
[6] | Hong Qian, Oriol Grau. Geographic patterns and ecological causes of phylogenetic structure in mosses along an elevational gradient in the central Himalaya [J]. Plant Diversity, 2025, 47(01): 98-105. |
[7] | Hong Qian, Jian Wang, Shenhua Qian, Michael Kessler. Geographic patterns and climatic drivers of the mean genus age of liverworts in North America [J]. Plant Diversity, 2024, 46(06): 723-731. |
[8] | Jianghua Duan, Liu Yang, Ting Tang, Jiesheng Rao, Wencong Liu, Xi Chen, Rong Li, Zehao Shen. Environment and management jointly shape the spatial patterns of plant species diversity of moist grasslands in the mountains of northeastern Yunnan [J]. Plant Diversity, 2024, 46(06): 744-754. |
[9] | Cindy Q. Tang, Min-Rui Du, Huan-Chong Wang, You-Cai Shi, Jia-Le Zeng, Shu-Li Xiao, Peng-Bin Han, Jian-Ran Wen, Shi-Qian Yao, Ming-Chun Peng, Chong-Yun Wang, Yong-Ping Li, Jordi López-Pujol. An unprotected vulnerable relict subtropical conifer—Keteleeria evelyniana: Its forests, populations, growth and endangerment by invasive alien plant species in China [J]. Plant Diversity, 2024, 46(05): 648-660. |
[10] | Yanjun Du, Rongchen Zhang, Xinran Tang, Xinyang Wang, Lingfeng Mao, Guoke Chen, Jiangshan Lai, Keping Ma. The mid-domain effect in flowering phenology [J]. Plant Diversity, 2024, 46(04): 502-509. |
[11] | Fangbing Li, Hong Qian, Jordi Sardans, Dzhamal Y. Amishev, Zixuan Wang, Changyue Zhang, Tonggui Wu, Xiaoniu Xu, Xiao Tao, Xingzhao Huang. Evolutionary history shapes variation of wood density of tree species across the world [J]. Plant Diversity, 2024, 46(03): 283-293. |
[12] | Hong Qian, Brent D. Mishler, Jian Zhang, Shenhua Qian. Global patterns and ecological drivers of taxonomic and phylogenetic endemism in angiosperm genera [J]. Plant Diversity, 2024, 46(02): 149-157. |
[13] | Haibin Yu, Man Yang, Zixin Lu, Weitao Wang, Fangyuan Yu, Yonghua Zhang, Xue Yin, Hongjun Yu, Junjie Hu, David C. Deane. A phylogenetic approach identifies patterns of beta diversity and floristic subregions of the Qinghai-Tibet Plateau [J]. Plant Diversity, 2024, 46(01): 59-69. |
[14] | Yi Jin, Hong Qian. Drivers of the differentiation between broad-leaved trees and shrubs in the shift from evergreen to deciduous leaf habit in forests of eastern Asian subtropics [J]. Plant Diversity, 2023, 45(05): 535-543. |
[15] | Hong Qian. Intercontinental comparison of phylogenetic relatedness in introduced plants at the transition from naturalization to invasion: A case study on the floras of South Africa and China [J]. Plant Diversity, 2023, 45(04): 363-368. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||