Plant Diversity ›› 2023, Vol. 45 ›› Issue (05): 513-522.DOI: 10.1016/j.pld.2022.07.002
• Articles • Previous Articles Next Articles
Yu-Juan Zhaoa,b,c, Gen-Shen Yind, Xun Gonga,b,c
Received:
2022-01-12
Revised:
2022-06-06
Online:
2023-11-04
Published:
2023-09-25
Contact:
Xun Gong,E-mail:gongxun@mail.kib.ac.cn
Supported by:
Yu-Juan Zhaoa,b,c, Gen-Shen Yind, Xun Gonga,b,c
通讯作者:
Xun Gong,E-mail:gongxun@mail.kib.ac.cn
基金资助:
Yu-Juan Zhao, Gen-Shen Yin, Xun Gong. RAD-sequencing improves the genetic characterization of a threatened tree peony (Paeonia ludlowii) endemic to China: Implications for conservation[J]. Plant Diversity, 2023, 45(05): 513-522.
Yu-Juan Zhao, Gen-Shen Yin, Xun Gong. RAD-sequencing improves the genetic characterization of a threatened tree peony (Paeonia ludlowii) endemic to China: Implications for conservation[J]. Plant Diversity, 2023, 45(05): 513-522.
[1] Aguilar, R., Quesada, M., Ashworth, L., Herrerias-Diego, Y., and Lobo, J., 2008. Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol. Ecol. 17, 5177-5188. https://doi.org/10.1111/j.1365-294X.2008.03971.x. [2] Ahrens, C.W., Rymer, P.D., Stow, A., Bragg, J., Dillon, S., Umbers, K.D.L., et al., 2018. The search for loci under selection: trends, biases and progress. Mol. Ecol. 27, 1342-1356. https://doi.org/10.1111/mec.14549. [3] Andrews, S., 2019. "FastQC: a quality control tool for high throughput sequence data", in: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. [4] Andrews, K.R., Good, J.M., Miller, M.R., Luikart, G., and Hohenlohe, P.A., 2016. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 17, 81-92. https://doi.org/10.1038/nrg.2015.28. [5] Baird, N.A., Etter, P.D., Atwood, T.S., Currey, M.C., Shiver, A.L., Lewis, Z.A., et al., 2008. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One. 3. https://doi.org/10.1371/journal.pone.0003376. [6] Banks, S.C., Cary, G.J., Smith, A.L., Davies, I.D., Driscoll, D.A., Gill, A.M., et al., 2013. How does ecological disturbance influence genetic diversity? Trends Ecol. Evol. 28, 670-679. https://doi.org/10.1016/j.tree.2013.08.005. [7] Barley, A.J., Cordes, J.E., Walker, J.M., and Thomson, R.C., 2022. Genetic diversity and the origins of parthenogenesis in the teiid lizard Aspidoscelis laredoensis. Mol. Ecol. 31, 266-278. https://doi.org/10.1111/mec.16213. [8] Barthelmess, E.L., Richards, C.M., and McCauley, D.E., 2006. Relative effects of nocturnal vs diurnal pollinators and distance on gene flow in small Silene alba populations. New Phytol. 169, 689-698. https://doi.org/10.1111/j.1469-8137.2005.01580.x. [9] Bell, D.A., Robinson, Z.L., Funk, W.C., Fitzpatrick, S.W., Allendorf, F.W., Tallmon, D.A., et al., 2019. The exciting potential and remaining uncertainties of genetic rescue. Trends Ecol. Evol. 34, 1070-1079. https://doi.org/10.1016/j.tree.2019.06.006. [10] Cai, C., Xiao, J., Ci, X., Conran, J.G., and Li, J., 2021. Genetic diversity of Horsfieldia tetratepala (Myristicaceae), an endangered plant species with extremely small populations to China: implications for its conservation. Plant Syst. Evol. 307, 1-12. https://doi.org/10.1007/s00606-021-01774-z. [11] Ceballos, G., Ehrlich, P.R., Barnosky, A.D., Garcia, A., Pringle, R.M., and Palmer, T.M., 2015. Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv. 1. https://doi.org/10.1126/sciadv.1400253. [12] Chang, C.C., Chow, C.C., Tellier, L., Vattikuti, S., Purcell, S.M., and Lee, J.J., 2015. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience. 4. https://doi.org/10.1186/s13742-015-0047-8. [13] Chen, S.F., Guo, W., Chen, Z.X., Liao, W.B., and Fan, Q., 2021. Strong genetic structure observed in Primulina danxiaensis, a small herb endemic to Mount Danxia with Extremely Small Populations. Front. Genet. 12. https://doi.org/10.3389/fgene.2021.722149. [14] Chen, X.L., Hou, G.L., Jin, S.M., Gao, J.Y., and Duan, R.L., 2020. The pollen records of human activities in Qinghai-Tibet Plateau during the Middle and late Holocene. Earth Environ. 48, 643-651. [15] Cilingir, F.G., Rheindt, F.E., Garg, K.M., Platt, K., Platt, S.G., and Bickford, D.P., 2017. Conservation genomics of the endangered Burmese roofed turtle. Conserv. Biol. 31, 1469-1476. https://doi.org/10.1111/cobi.12921. [16] Crane, P., 2020. Conserving our global botanical heritage: the PSESP plant conservation program. Plant Diver. 42, 319-322. https://doi.org/10.1016/j.pld.2020.06.007. [17] D'Aloia, C.C., Andres, J.A., Bogdanowicz, S.M., McCune, A.R., Harrison, R.G., and Buston, P.M., 2020. Unraveling hierarchical genetic structure in a marine metapopulation: a comparison of three high-throughput genotyping approaches. Mol. Ecol. 29, 2189-2203. https://doi.org/10.1111/mec.15405. [18] Do, C., Waples, R.S., Peel, D., Macbeth, G.M., Tillett, B.J., and Ovenden, J.R., 2014. NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209-214. https://doi.org/https://doi.org/10.1111/1755-0998.12157. [19] Doyle, J., 1991. DNA protocols for plants-CTAB total DNA isolation. In G.M. Hewitt & A. Johnston (Eds), Molecular Techniques in Taxonomy. Berlin, Springer, pp. 283-293. [20] Dray, S., Dufour, A.B., and Chessel, D., 2007. The ade4 package-II: two-table and K-table methods. R. News. 7, 47-52. [21] Eckert, C.G., Samis, K.E., and Lougheed, S.C., 2008. Genetic variation across species' geographical ranges: the central-marginal hypothesis and beyond. Mol. Ecol. 17, 1170-1188. https://doi.org/10.1111/j.1365-294X.2007.03659.x. [22] Evanno, G., Regnaut, S., and Goudet, J., 2005. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14, 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x. [23] Excoffier, L., Laval, G., and Schneider, S., 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol. Bioinforma. Online. 1, 47-50. [24] Fan, Y.M., Wang, Q., Dong, Z.J., Yin, Y.J., da Silva, J.A.T., and Yu, X.N., 2020. Advances in molecular biology of Paeonia L. Planta. 251, 1-47. https://doi.org/10.1007/s00425-019-03299-9. [25] Farwig, N., Braun, C., and Bohning-Gaese, K., 2008. Human disturbance reduces genetic diversity of an endangered tropical tree, Prunus africana (Rosaceae). Conserv. Genet. 9, 317-326. [26] Foll, M., and Gaggiotti, O., 2008. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a bayesian perspective. Genetics. 180, 977-993. https://doi.org/10.1534/genetics.108.092221. [27] Frankham, R., 1995. Effective population-size adult-population size ratios in wildlife - a review. Genet. Res. 66, 95-107. https://doi.org/10.1017/s0016672300034455. [28] Frankham, R., 2010. Challenges and opportunities of genetic approaches to biological conservation. Biol. Conserv. 143, 1919-1927. https://doi.org/10.1016/j.biocon.2010.05.011. [29] Frankham, R., Ballou, J.D., Eldridge, M.D.B., Lacy, R.C., Ralls, K., Dudash, M.R., et al., 2011. Predicting the probability of outbreeding depression. Conserv. Biol. 25, 465-475. https://doi.org/10.1111/j.1523-1739.2011.01662.x. [30] Fraser, D.J., and Bernatchez, L., 2001. Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol. Ecol. 10, 2741-2752. https://doi.org/10.1046/j.1365-294X.2001.t01-1-01411.x. [31] Funk, W.C., McKay, J.K., Hohenlohe, P.A., and Allendorf, F.W., 2012. Harnessing genomics for delineating conservation units. Trends Ecol. Evol. 27, 489-496. https://doi.org/10.1016/j.tree.2012.05.012. [32] Gutenkunst, R.N., Hernandez, R.D., Williamson, S.H., and Bustamante, C.D., 2009. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet. 5. https://doi.org/10.1371/journal.pgen.1000695. [33] Hampe, A., and Petit, R.J., 2005. Conserving biodiversity under climate change: the rear edge matters. Ecol. Lett. 8, 461-467. https://doi.org/10.1111/j.1461-0248.2005.00739.x. [34] Hamrick, J.L., and Godt, M.J.W., 1996. Effects of life history traits on genetic diversity in plant species. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 351, 1291-1298. https://doi.org/10.1098/rstb.1996.0112. [35] Hao, H.P., He, Z., Li, H., Shi, L., and Tang, Y.D., 2014. Effect of root length on epicotyl dormancy release in seeds of Paeonia ludlowii, Tibetan peony. Ann. Bot. 113, 443-452. https://doi.org/10.1093/aob/mct273. [36] Hewitt, G., 2000. The genetic legacy of the Quaternary ice ages. Nature. 405, 907-913. https://doi.org/10.1038/35016000. [37] Hong, D.Y., 1997. Paeonia (Paeoniaceae) in Xizang (Tibet). Novon. 156-161. https://doi.org/10.2307/3392188. [38] Hong, D.Y., Zhou, S.L., He, X.J., Yuan, J.H., Zhang, Y.L., Cheng, F.Y., et al., 2017. Current status of wild tree peony species with special reference to conservation. Biodivers. Sci. 25, 781-793. https://doi.org/10.17520/biods.2017129. [39] Hutchison, Delbert W., Templeton, Alan R., 1999. Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53, 1898–1914, https://doi.org/https://doi.org/10.1111/j.1558-5646.1999.tb04571.x. [40] Iannucci, A., Benazzo, A., Natali, C., Arida, E.A., Zein, M.S.A., Jessop, T.S., et al., 2021. Population structure, genomic diversity and demographic history of Komodo dragons inferred from whole-genome sequencing. Mol. Ecol. 30, 6309-6324. https://doi.org/10.1111/mec.16121. [41] Jakobsson, M., and Rosenberg, N.A., 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 23, 1801-1806. https://doi.org/10.1093/bioinformatics/btm233. [42] Jensen, E.L., Edwards, D.L., Garrick, R.C., Miller, J.M., Gibbs, J.P., Cayot, L.J., et al., 2018. Population genomics through time provides insights into the consequences of decline and rapid demographic recovery through head-starting in a Galapagos giant tortoise. Evol. Appl. 11, 1811-1821. https://doi.org/10.1111/eva.12682. [43] Kumar, S., Stecher, G., and Tamura, K., 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874. https://doi.org/10.1093/molbev/msw054. [44] Li, J.L., Milne, R.I., Ru, D.F., Miao, J.B., Tao, W.J., Zhang, L., et al., 2020. Allopatric divergence and hybridization within Cupressus chengiana (Cupressaceae), a threatened conifer in the northern Hengduan Mountains of western China. Mol. Ecol. 29, 1250-1266. https://doi.org/10.1111/mec.15407. [45] Li, J., and Wang, Z.H., 2019. Nutrients, fatty acid composition and antioxidant activity of the flowers and seed oils in wild populations of Paeonia ludlowii. Emir. J. Food Agric. 31, 206-213. https://doi.org/10.9755/ejfa.2019.v31.i3.1922. [46] Li, S.M., Lv, S.Z., Yu, K., Wang, Z.Y., Li, Y.F., Ni, X.M., et al., 2019. Construction of a high-density genetic map of tree peony (Paeonia suffruticosa Andr. Moutan) using restriction site associated DNA sequencing (RADseq) approach. Tree Genet. Genomes 15. https://doi.org/10.1007/s11295-019-1367-0. [47] Lee, K.M., Ranta, P., Saarikivi, J., Kutnar, L., Vres, B., Dzhus, M., et al., 2020. Using genomic information for management planning of an endangered perennial, Viola uliginosa. Ecol. Evol. 10, 2638-2649. https://doi.org/10.1002/ece3.6093. [48] Lischer, H.E.L., and Excoffier, L., 2012. PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics. 28, 298-299. https://doi.org/10.1093/bioinformatics/btr642. [49] Liu, X.M., and Fu, Y.X., 2015. Exploring population size changes using SNP frequency spectra. Nat. Genet. 47, 555-559. https://doi.org/10.1038/ng.3254. [50] Liu, J.G., Ouyang, Z.Y., Pimm, S.L., Raven, P.H., Wang, X.K., Miao, H., et al., 2003. Protecting China's biodiversity. Science. 300, 1240-1241. https://doi.org/10.1126/science.1078868. [51] Liu, D.T., Zhang, L., Wang, J.H., and Ma, Y.P., 2020. Conservation genomics of a threatened Rhododendron: contrasting patterns of population structure revealed from neutral and selected SNPs. Front. Genet. 11. https://doi.org/10.3389/fgene.2020.00757. [52] Llorens, T.M., Ayre, D.J., and Whelan, R.J., 2018. Anthropogenic fragmentation may not alter pre-existing patterns of genetic diversity and differentiation in perennial shrubs. Mol. Ecol. 27, 1541-1555. https://doi.org/10.1111/mec.14552. [53] Lv, S.Z., Cheng, S., Wang, Z.Y., Li, S.M., Jin, X., Lan, L., et al., 2020. Draft genome of the famous ornamental plant Paeonia suffruticosa. Ecol. Evol. 10, 4518-4530. https://doi.org/10.1002/ece3.5965. [54] Ma, Y.P., Chen, G., Grumbine, R.E., Dao, Z.L., Sun, W.B., and Guo, H.J., 2013. Conserving plant species with extremely small populations (PSESP) in China. Biodivers. Conserv. 22, 803-809. https://doi.org/10.1007/s10531-013-0434-3. [55] Marques, D.A., Meier, J.I., and Seehausen, O., 2019. A combinatorial view on speciation and adaptive radiation. Trends Ecol. Evol. 34, 531-544. https://doi.org/10.1016/j.tree.2019.02.008. [56] Nei, M., and Kumar, S., 2000. Molecular Evolution and Phylogenetics. New York: Oxford University. [57] Ni, S.W., and Wang, L.Y., 2009. Introduction and Ex-Situ Conservation of Paeonia delavayi, Paeonia lutea, Paeonia ludlowii. Beijing Forestry University. [58] Nielsen, E.S., Beger, M., Henriques, R., and von der Heyden, S., 2020. A comparison of genetic and genomic approaches to represent evolutionary potential in conservation planning. Biol. Conserv. 251. https://doi.org/10.1016/j.biocon.2020.108770. [59] Ouborg, N.J., Pertoldi, C., Loeschcke, V., Bijlsma, R., and Hedrick, P.W., 2010. Conservation genetics in transition to conservation genomics. Trends Genet. 26, 177-187. https://doi.org/10.1016/j.tig.2010.01.001. [60] Papuga, G., Gauthier, P., Pons, V., Farris, E., and Thompson, J.D., 2018. Ecological niche differentiation in peripheral populations: a comparative analysis of eleven Mediterranean plant species. Ecography. 41, 1650-1664. https://doi.org/10.1111/ecog.03331. [61] Peakall, R., and Smouse, P.E., 2006. Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x. [62] Pimm, S.L., Jenkins, C.N., Abell, R., Brooks, T.M., Gittleman, J.L., Joppa, L.N., et al., 2014. The biodiversity of species and their rates of extinction, distribution, and protection. Science. 344. https://doi.org/10.1126/science.1246752. [63] Pritchard, J.K., Stephens, M., and Donnelly, P., 2000. Inference of population structure using multilocus genotype data. Genetics. 155, 945-959. https://doi.org/doi: 10.1111/j.1471-8286.2007.01758.x. [64] Puritz, J.B., Addison, J.A., and Toonen, R.J., 2012. Next-generation phylogeography: a targeted approach for multilocus sequencing of non-model organisms. PLoS One. 7. https://doi.org/10.1371/journal.pone.0034241. [65] Rochette, N.C., Rivera-Colon, A.G., and Catchen, J.M., 2019. Stacks 2: analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol. Ecol. 28, 4737-4754. https://doi.org/10.1111/mec.15253. [66] Rosenberg, N.A., 2004. DISTRUCT: a program for the graphical display of population structure. Mol. Ecol. Notes 4, 137-138. https://doi.org/10.1046/j.1471-8286.2003.00566.x. [67] Shuai, Y.T., and Zang, J.C., 2016. Paeonid ludlowii and Paeonia delavayi flower characteristics and change of flower-visiting insects and phenotypic selection. Southwest China J. Agric. Sci. 29, 2714-2719. [68] Stankowski, S., and Ravinet, M., 2021. Defining the speciation continuum. Evolution. 75, 1256-1273. https://doi.org/10.1111/evo.14215. [69] Tamura, K., and Nei, M., 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512-526. https://doi.org/10.1093/oxfordjournals.molbev.a040023. [70] Tang, Y., Yuan, T., and Chen, T.Q., 2021. Flowering characteristics and breeding system of Paeonia ludlowii. Acta Bot. Boreal.-Occident. Sin. 41, 782-794. [71] Terhorst, J., and Song, Y.S., 2015. The sample frequency spectrum. Proc. Natl. Acad. Sci. U. S. A. 112, 7677-7682. https://doi.org/10.1073/pnas.1503717112. [72] Thompson, J.D., Gaudeul, M., and Debussche, M.A.X., 2010. Conservation value of sites of hybridization in peripheral populations of rare plant species. Conserv. Biol. 24, 236-245. https://doi.org/10.1111/j.1523-1739.2009.01304.x. [73] Vranckx, G., Jacquemyn, H., Muys, B., and Honnay, O., 2012. Meta-analysis of susceptibility of woody plants to loss of genetic diversity through habitat fragmentation. Conserv. Biol. 26, 228-237. https://doi.org/10.1111/j.1523-1739.2011.01778.x. [74] Whiteley, A.R., Fitzpatrick, S.W., Funk, W.C., and Tallmon, D.A., 2015. Genetic rescue to the rescue. Trends Ecol. Evol. 30, 42-49. https://doi.org/10.1016/j.tree.2014.10.009. [75] Wikstrom, N., Savolainen, V., and Chase, M.W., 2001. Evolution of the angiosperms: calibrating the family tree. Proc. R. Soc. B-Biol. Sci. 268, 2211-2220. https://doi.org/10.1098/rspb.2001.1782. [76] Xu, X.X., Cheng, F.Y., Peng, L.P., Sun, Y.Q., Hu, X.G., Li, S.Y., et al., 2019. Late Pleistocene speciation of three closely related tree peonies endemic to the Qinling-Daba Mountains, a major glacial refugium in Central China. Ecol. Evol. 9, 7528-7548. https://doi.org/10.1002/ece3.5284. [77] Xiao, J.H., Ding, X., Li, L., Ma, H., Ci, X.Q., van der Merwe, M., et al., 2020. Miocene diversification of a golden-thread nanmu tree species (Phoebe zhennan, Lauraceae) around the Sichuan Basin shaped by the East Asian monsoon. Ecol. Evol. 10, 10543-10557. https://doi.org/10.1002/ece3.6710. [78] Xu, T.T., Wang, Q., Olson, M.S., Li, Z.H., Miao, N., and Mao, K.S., 2017. Allopatric divergence, demographic history, and conservation implications of an endangered conifer Cupressus chengiana in the eastern Qinghai-Tibet Plateau. Tree Genet. Genomes 13. https://doi.org/10.1007/s11295-017-1183-3. [79] Xue, Y.Q., Liu, R., Xue, J.Q., Wang, S.L., and Zhang, X.X., 2021. Genetic diversity and relatedness analysis of nine wild species of tree peony based on simple sequence repeats markers. Hortic. Plant J. 7, 579-588. https://doi.org/10.1016/j.hpj.2021.05.004. [80] Yang, J., Cai, L., Liu, D., Chen, G., Gratzfeld, J., and Sun, W., 2020a. China's conservation program on plant species with extremely small populations (PSESP): progress and perspectives. Biol. Conserv. 244, 108535. https://doi.org/https://doi.org/10.1016/j.biocon.2020.108535. [81] Yang, Y., Ma, T., Wang, Z., Lu, Z., Li, Y., Fu, C., et al., 2018. Genomic effects of population collapse in a critically endangered ironwood tree Ostrya rehderiana. Nat. Commun. 9, 5449. https://doi.org/10.1038/s41467-018-07913-4. [82] Yang, Y., Sun, M., Li, S., Chen, Q., Teixeira da Silva, J.A., Wang, A., et al., 2020b. Germplasm resources and genetic breeding of Paeonia: a systematic review. Hortic. Res. 7, 107. https://doi.org/10.1038/s41438-020-0332-2. [83] Yang, X.L., Wang, Q.J., Lan, X.Z., and Li, C.Y., 2007. Numeric dynamics of the endangered plant population of Paeonia ludlowii. Acta Ecol. Sin. 27, 1242-1247. [84] Yao, X.H., Ye, Q.G., Kang, M., and Huang, H.W., 2007. Microsatellite analysis reveals interpopulation differentiation and gene flow in the endangered tree Changiostyrax dolichocarpa (Styracaceae) with fragmented distribution in central China. New Phytol. 176, 472-480. https://doi.org/10.1111/j.1469-8137.2007.02175.x. [85] Young, A., Boyle, T., Brown, T., 1996. The population genetic consequences of habitat fragmentation for plants. Trends Ecol. Evol. 11, 413–418, https://doi.org/https://doi.org/10.1016/0169-5347(96)10045-8. [86] Younger, J.L., Clucas, G.V., Kao, D.M., Rogers, A.D., Gharbi, K., Hart, T., et al., 2017. The challenges of detecting subtle population structure and its importance for the conservation of emperor penguins. Mol. Ecol. 26, 3883-3897. https://doi.org/10.1111/mec.14172. [87] Yu, H.B., Deane, D.C., Sui, X.H., Fang, S.Q., Chu, C.J., Liu, Y., et al., 2019a. Testing multiple hypotheses for the high endemic plant diversity of the Tibetan Plateau. Glob. Ecol. Biogeogr. 28, 131-144. https://doi.org/10.1111/geb.12827. [88] Yu, H.B., Favre, A., Sui, X.H., Chen, Z., Qi, W., and Xie, G.W., 2019b. Mapping the genetic patterns of plants in the region of the Qinghai-Tibet Plateau: implications for conservation strategies. Divers. Distrib. 25, 310-324. https://doi.org/10.1111/ddi.12847. [89] Zhang, L., 2008. Population Characteristics and Seed's Biology of Paeonia ludlowii. Master, Beijing Forestry University. [90] Zhang, J.M., Lopez-Pujol, J., Gong, X., Wang, H.F., Vilatersana, R., and Zhou, S.L., 2018. Population genetic dynamics of Himalayan-Hengduan tree peonies, Paeonia subsect. Delavayanae. Mol. Phylogenet. Evol. 125, 62-77. https://doi.org/10.1016/j.ympev.2018.03.003. [91] Zhang, D.J., Shen, X.K., Cheng, T., Xia, H., Liu, W., Gao, X., et al., 2020. New advances in the study of prehistoric human activity on the Tibetan Plateau. Chin. Sci. Bull. 65, 475-482. [92] Zhang, X., Zhai, Y., Yuan, J., and Hu, Y., 2019. New insights into Paeoniaceae used as medicinal plants in China. Sci. Rep. 9, 18469. https://doi.org/10.1038/s41598-019-54863-y. [93] Zhao, Y.J., Yin, G.S., Pan, Y.Z., Tian, B., and Gong, X., 2021. Climatic refugia and geographical isolation contribute to the speciation and genetic divergence in Himalayan-Hengduan tree peonies (Paeonia delavayi and Paeonia ludlowii). Front. Genet. 11. https://doi.org/10.3389/fgene.2020.595334. [94] Zheng, B.X., Xu, Q.Q., and Shen, Y.Q., 2002. The relationship between climate change and Quaternary glacial cycles on the Qinghai-Tibetan Plateau: review and speculation. Quat. Int. 97-98, 93-101. https://doi.org/10.1016/S1040-6182(02)00054-X. [95] Zhou, S.L., Xu, C., Liu, J., Yu, Y., Wu, P., Cheng, T., et al., 2021. Out of the pan-himalaya: evolutionary history of the Paeoniaceae revealed by phylogenomics. J. Syst. Evol. 59, 1170-1182. https://doi.org/10.1111/jse.12688. |
[1] | Fei-Fei Li, Qiang Hao, Xia Cui, Ruo-Zhu Lin, Bin-Sheng Luo, Jin-Shuang Ma. Global invasive alien plant management lists: Assessing current practices and adapting to new demands [J]. Plant Diversity, 2025, 47(04): 666-680. |
[2] | Yiqing Chen, Lina Dong, Huiqin Yi, Catherine Kidner, Ming Kang. Genomic divergence and mutation load in the Begonia masoniana complex from limestone karsts [J]. Plant Diversity, 2024, 46(05): 575-584. |
[3] | Tao Zhou, Xiaodan Chen, Jordi López-Pujol, Guoqing Bai, Sonia Herrando-Moraira, Neus Nualart, Xiao Zhang, Yuemei Zhao, Guifang Zhao. Genetically-and environmentally-dependent processes drive interspecific and intraspecific divergence in the Chinese relict endemic genus Dipteronia [J]. Plant Diversity, 2024, 46(05): 585-599. |
[4] | Yixian Li, Xuyao Zhao, Manli Xia, Xinzeng Wei, Hongwei Hou. Temperature is a cryptic factor shaping the geographical pattern of genetic variation in Ceratophyllum demersum across a subtropical freshwater lake [J]. Plant Diversity, 2024, 46(05): 630-639. |
[5] | Liping Shan, Meng Hou. Herbivore and native plant diversity synergistically resist alien plant invasion regardless of nutrient conditions [J]. Plant Diversity, 2024, 46(05): 640-647. |
[6] | Zhen Yang, Lisong Liang, Weibo Xiang, Lujun Wang, Qinghua Ma, Zhaoshan Wang. Conservation genomics provides insights into genetic resilience and adaptation of the endangered Chinese hazelnut, Corylus chinensis [J]. Plant Diversity, 2024, 46(03): 294-308. |
[7] | Dan-Qi Li, Lu Jiang, Hua Liang, Da-Hai Zhu, Deng-Mei Fan, Yi-Xuan Kou, Yi Yang, Zhi-Yong Zhang. Resolving a nearly 90-year-old enigma: The rare Fagus chienii is conspecific with F. hayatae based on molecular and morphological evidence [J]. Plant Diversity, 2023, 45(05): 544-551. |
[8] | Lin Lin, Xiao-Long Jiang, Kai-Qi Guo, Amy Byrne, Min Deng. Climate change impacts the distribution of Quercus section Cyclobalanopsis (Fagaceae), a keystone lineage in East Asian evergreen broadleaved forests [J]. Plant Diversity, 2023, 45(05): 552-568. |
[9] | Ting-Ting Zou, Sen-Tao Lyu, Qi-Lin Jiang, Shu-He Shang, Xiao-Fan Wang. Pre- and post-pollination barriers between two exotic and five native Sagittaria species: Implications for species conservation [J]. Plant Diversity, 2023, 45(04): 456-468. |
[10] | Hong Qian, Jian Zhang, Meichen Jiang. Global patterns of taxonomic and phylogenetic diversity of flowering plants:Biodiversity hotspots and coldspots [J]. Plant Diversity, 2023, 45(03): 265-271. |
[11] | Qin Liu, Tian-Tian Xue, Xiao-Xia Zhang, Xu-Dong Yang, Fei Qin, Wen-Di Zhang, Lei Wu, Rainer W. Bussmann, Sheng-Xiang Yu. Distribution and conservation of near threatened plants in China [J]. Plant Diversity, 2023, 45(03): 272-283. |
[12] | Aabid Hussain Mir, Kiranmay Sarma, Krishna Upadhaya. Assessing the effectiveness of community managed forests for plant diversity conservation in Meghalaya, Northeast India [J]. Plant Diversity, 2022, 44(03): 243-254. |
[13] | Wei-Bo Du, Peng Jia, Guo-Zhen Du. Current patterns of plant diversity and phylogenetic structure on the Kunlun Mountains [J]. Plant Diversity, 2022, 44(01): 30-38. |
[14] | Jing-Qiu Feng, Ji-Hua Wang, Shi-Bao Zhang. Leaf physiological and anatomical responses of two sympatric Paphiopedilum species to temperature [J]. Plant Diversity, 2022, 44(01): 101-108. |
[15] | Xiu-Jiao Zhang, Xiong-Fang Liu, De-Tuan Liu, Yu-Rong Cao, Zheng-Hong Li, Yong-Peng Ma, Hong Ma. Genetic diversity and structure of Rhododendron meddianum, a plant species with extremely small populations [J]. Plant Diversity, 2021, 43(06): 472-479. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||