Plant Diversity ›› 2024, Vol. 46 ›› Issue (02): 194-205.DOI: 10.1016/j.pld.2023.10.004
Peng-Cheng Fua, Qiao-Qiao Guoa, Di Changa, Qing-Bo Gaob, Shan-Shan Suna
收稿日期:
2023-04-26
修回日期:
2023-10-24
出版日期:
2024-03-25
发布日期:
2024-04-07
通讯作者:
Peng-Cheng Fu,E-mail:fupengc@sina.com
基金资助:
Peng-Cheng Fua, Qiao-Qiao Guoa, Di Changa, Qing-Bo Gaob, Shan-Shan Suna
Received:
2023-04-26
Revised:
2023-10-24
Online:
2024-03-25
Published:
2024-04-07
Contact:
Peng-Cheng Fu,E-mail:fupengc@sina.com
Supported by:
摘要: Understanding the evolutionary and ecological processes involved in population differentiation and speciation provides critical insights into biodiversity formation. In this study, we employed 29,865 single nucleotide polymorphisms (SNPs) and complete plastomes to examine genomic divergence and hybridization in Gentiana aristata, which is endemic to the Qinghai-Tibet Plateau (QTP) region. Genetic clustering revealed that G. aristata is characterized by geographic genetic structures with five clusters (West, East, Central, South and North). The West cluster has a specific morphological character (i.e., blue corolla) and higher values of FST compared to the remaining clusters, likely the result of the geological barrier formed by the Yangtze River. The West cluster diverged from the other clusters in the Early Pliocene; these remaining clusters diverged from one another in the Early Quaternary. Phylogenetic reconstructions based on SNPs and plastid data revealed substantial cyto-nuclear conflicts. Genetic clustering and D-statistics demonstrated rampant hybridization between the Central and North clusters, along the Bayankala Mountains, which form the geological barrier between the Central and North clusters. Species distribution modeling demonstrated the range of G. aristata expanded since the Last Interglacial period. Our findings provide genetic and morphological evidence of cryptic diversity in G. aristata, and identified rampant hybridization between genetic clusters along a geological barrier. These findings suggest that geological barriers and climatic fluctuations have an important role in triggering diversification as well as hybridization, indicating that cryptic diversity and hybridization are essential factors in biodiversity formation within the QTP region.
Peng-Cheng Fu, Qiao-Qiao Guo, Di Chang, Qing-Bo Gao, Shan-Shan Sun. Cryptic diversity and rampant hybridization in annual gentians on the Qinghai-Tibet Plateau revealed by population genomic analysis[J]. Plant Diversity, 2024, 46(02): 194-205.
Peng-Cheng Fu, Qiao-Qiao Guo, Di Chang, Qing-Bo Gao, Shan-Shan Sun. Cryptic diversity and rampant hybridization in annual gentians on the Qinghai-Tibet Plateau revealed by population genomic analysis[J]. Plant Diversity, 2024, 46(02): 194-205.
[1] Abbott, R.J., 2017. Plant speciation across environmental gradients and the occurrence and nature of hybrid zones. J. Syst. Evol. 55, 238-258. [2] Abbott, R.J., Albach, D., Ansell, S., et al., 2013. Hybridization and speciation. J. Evolution. Biol. 26, 229-246. [3] Antonelli, A., Kissling, W.D., Flantua, et al., 2018. Geological and climatic influences on mountain biodiversity. Nat. Geosci. 11, 718-725. [4] Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic:a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120. [5] Bouckaert, R., Heled, J., Kuhnert, D., et al., 2014. BEAST 2:a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537. [6] Carstens, B.C., Satler, J.D., 2013. The carnivorous plant described as Sarracenia alata contains two cryptic species. Biol. J. Linn. Soc. 109, 737-746. [7] Chen, J. 2020. Evolutionary Process of the Yangtze River. Evolution and Water Resources Utilization of the Yangtze River. Singapore:Springer, pp. 47-122. [8] Chen, C.L., Zhang, L., Li, J.L., et al., 2021. Phylotranscriptomics reveals extensive gene duplication in the subtribe Gentianinae (Gentianaceae). J. Syst. Evol. 59, 1198-1208. [9] Chen, C., Ruhfel, B.R., Li, J., et al., 2023. Phylotranscriptomics of Swertiinae (Gentianaceae) reveals that key floral traits are not phylogenetically correlated. J. Integr. Plant Biol. 65, 1490-1504. [10] Christe, C., Caetano, S., Aeschimann, D., et al., 2014. The intraspecific genetic variability of siliceous and calcareous Gentiana species is shaped by contrasting demographic and re-colonization processes. Mol. Phylogenet. Evol. 70, 323-336. [11] Christmas, M.J., Jones, J.C., Olsson, A., et al., 2021. Genetic barriers to historical gene flow between cryptic species of alpine bumblebees revealed by comparative population genomics. Mol. Biol. Evol. 38, 3126-3143. [12] Clegg, M.T., Durbin, M.L., 2000. Flower color variation:a model for the experimental study of evolution. Proc. Natl. Acad. Sci. U.S.A. 97, 7016-7023. [13] Danecek, P., Auton, A., Abecasis, G., et al., 2011. The variant call format and VCFtools. Bioinformatics 27, 2156-2158. [14] Dantas-Queiroz, M.V., Hurbath, F., de Russo Godoy, F., et al., 2023. Comparative phylogeography reveals the demographic patterns of Neotropical ancient mountain species. Mol. Ecol. 32, 3165-3181. [15] Deng, J.Y., Fu, R.H., Compton, S.G., et al., 2020. Sky islands as foci for divergence of fig trees and their pollinators in southwest China. Mol. Ecol. 29, 762-782. [16] Ding, W.N., Ree, R.H., Spicer, R.A., et al., 2020. Ancient orogenic and monsoon-driven assembly of the world's richest temperate alpine flora. Science 369, 578-581. [17] Drummond, A.J., Suchard, M.A., Xie, D., et al., 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969-1973. [18] Durand, E.Y., Patterson, N., Reich, D., et al., 2011. Testing for ancient admixture between closely related populations. Mol. Biol. Evol. 28, 2239-2252. [19] Ebersbach, J., Tkach, N., Roser, M., et al., 2020. The role of hybridisation in the making of the species-rich arctic-alpine genus Saxifraga (Saxifragaceae). Diversity 12, 440. [20] Elsen, P.R., Tingley, M.W., 2015. Global mountain topography and the fate of montane species under climate change. Nat. Clim. Change 5, 772-776. [21] Favre, A., Packert, M., Pauls, S. U., et al., 2015. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biol. Rev. 90, 236-253. [22] Favre, A., Michalak, I., Chen, C.H., et al., 2016. Out-of-Tibet:the spatio-temporal evolution of Gentiana (Gentianaceae). J. Biogeogr. 43, 1967-1978. [23] Favre, A., Pringle, J.S., Heckenhauer, J., et al., 2020. Phylogenetic relationships and sectional delineation within Gentiana (Gentianaceae). Taxon 69, 1221-1238. [24] Favre, A., Paule, J., Ebersbach, J., 2021. Incongruences between nuclear and plastid phylogenies challenge the identification of correlates of diversification in Gentiana in the European alpine system. Alp. Bot. 132, 29-50. [25] Feng, L., Ruhsam, M., Wang, Y.H., et al., 2020. Using demographic model selection to untangle allopatric divergence and diversification mechanisms in the Rheum palmatum complex in the Eastern Asiatic Region. Mol. Ecol. 29, 1791-1805. [26] Fick, S.E., Hijmans, R.J., 2017. WorldClim 2:new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302-4315. [27] Flantua, S.G., O'Dea, A., Onstein, R.E., et al., 2019. The flickering connectivity system of the north Andean paramos. J. Biogeogr. 46, 1808-1825. [28] Fu, P.C., Ya, H.Y., Liu, Q.W., et al., 2018. Out of refugia:Population genetic structure and evolutionary history of the alpine medicinal plant Gentiana lawrencei var. farreri (Gentianaceae). Front. Genet. 9, 564. [29] Fu, P.C., Sun, S.S., Khan, G., et al., 2020. Population subdivision and hybridization in a species complex of Gentiana in the Qinghai-Tibetan Plateau. Ann. Bot. 125, 677-690. [30] Fu, P.C., Twyford, A.D., Sun, S.S., et al., 2021a. Recurrent hybridization underlies the evolution of novelty in Gentiana (Gentianaceae) in the Qinghai-Tibetan Plateau. AoB Plants 13, plaa068. [31] Fu, P.C., Sun, S.S., Twyford, A.D., et al., 2021b. Lineage-specific plastid degradation in subtribe Gentianinae (Gentianaceae). Ecol. Evol. 11, 3286-3299. [32] Fu, P.C., Sun, S.S., Hollingsworth, P.M., et al., 2022a. Population genomics reveal deep divergence and strong geographical structure in gentians in the Hengduan Mountains. Front. Plant Sci. 13, 936761. [33] Fu, P.C., Favre, A., Wang, R., et al., 2022b. Between allopatry and secondary contact:differentiation and hybridization among three sympatric Gentiana species in the Qinghai-Tibet Plateau. BMC Plant Biol. 22, 1-15. [34] Fu, P.C., Chen, S.L., Sun, S.S., et al., 2022c. Strong plastid degradation is consistent within section Chondrophyllae, the most speciose lineage of Gentiana. Ecol. Evol. 12, e9205. [35] Garrison, E., Marth, G., 2012. Haplotype-based variant detection from short-read sequencing. arXiv. 1207.3907. [36] Goudet, J., 2005. hierfstat, a package for r to compute and test hierarchical F-statistics. Mol. Ecol. Notes. 5, 184-186. [37] Guo, W., Yang, Y., Zhang, X., et al., 2023. Genomic divergence between two sister Medicago species triggered by the Quaternary climatic oscillations in the Qinghai-Tibet Plateau and northern China. Mol. Ecol. 32, 3118-3132. [38] Hebert, P.D., Penton, E.H., Burns, J.M., et al., 2004. Ten species in one:DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. USA. 101, 14812-14817. [39] Hewitt, G., 2000. The genetic legacy of the Quaternary ice ages. Nature 405, 907-913. [40] Ho, T.N., Liu, S.W., 2001. A Worldwide Monograph of Gentiana. Beijing:Science Press. [41] Ho, T.N., Pringle, J.S., 1995. Gentianaceae. In:Wu, Z.Y., Raven, P.H. (eds.). Flora of China, vol. 16. Beijing:Science Press; St. Louis:Missouri Botanical Garden, pp. 1-140. [42] Hoang, D.T., Chernomor, O., Von Haeseler, A., et al., 2018. UFBoot2:improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518-522. [43] Hou, Q.Z., Duan, Y.W., Si, Q.W., et al., 2009. Pollination ecology of Gentiana lawrencei var. farreri, a late-flowering Qinghai-Tibet plateau species. Chin. J. Plant Ecol. 33, 1156-1164. [44] Hu, Q., Peng, H., Bi, H., et al., 2016. Genetic homogenization of the nuclear ITS loci across two morphologically distinct gentians in their overlapping distributions in the Qinghai-Tibet Plateau. Sci. Rep. 6, 1-11. [45] Janssens, S.B., Couvreur, T.L.P., Mertens, A., et al., 2020. A large-scale species level dated angiosperm phylogeny for evolutionary and ecological analyses. Biodivers. Data J. 8, e39677. [46] Jin, J.J., Yu, W.B., Yang, J.B., et al., 2020. GetOrganelle:a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 1-31. [47] Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K., et al., 2017. ModelFinder:fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587. [48] Katoh, K., Misawa, K., Kuma, K.I., et al., 2002. MAFFT:a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059-3066. [49] Kirschner, P., Zaveska, E., Gamisch, A., et al., 2020. Long-term isolation of European steppe outposts boosts the biome's conservation value. Nat. Commun. 11, 1968. [50] Lei, F., Qu, Y., Song, G., 2014. Species diversification and phylogeographical patterns of birds in response to the uplift of the Qinghai-Tibet Plateau and Quaternary glaciations. Curr. Zool. 60, 149-161. [51] Li, H., Durbin, R., 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760. [52] Li, H., Handsaker, B., Wysoker, A., et al., 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078-2079. [53] Li, Q., Sun, H., Boufford, D. E., et al., 2021. Grade of membership models reveal geographical and environmental correlates of floristic structure in a temperate biodiversity hotspot. New Phytol. 232, 1424-1435. [54] Li, T, Yu, X., Ren, Y., et al., 2022. The chromosome-level genome assembly of Gentiana dahurica (Gentianaceae) provides insights into gentiopicroside biosynthesis. DNA Res. 29, dsac008. [55] Li, X., Ruhsam, M., Wang, Y., et al., 2023. Wind-dispersed seeds blur phylogeographic breaks:The complex evolutionary history of Populus lasiocarpa around the Sichuan Basin. Plant Divers. 45, 156-168. [56] Liang, Q., Xu, X., Mao, K., et al., 2018. Shifts in plant distributions in response to climate warming in a biodiversity hotspot, the Hengduan Mountains. J. Biogeogr. 45, 1334-1344. [57] Liang, M., Chen, W., LaFountain, A.M., et al., 2023. Taxon-specific, phased siRNAs underlie a speciation locus in monkeyflowers. Science 379, 576-582. [58] Lischer, H.E., Excoffier, L., 2012. PGDSpider:an automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics 28, 298-299. [59] Liu, J., Moller, M., Provan, J., et al., 2013. Geological and ecological factors drive cryptic speciation of yews in a biodiversity hotspot. New Phytol. 199, 1093-1108. [60] Liu, B., Abbott, R.J., Lu, Z., et al., 2014. Diploid hybrid origin of Ostryopsis intermedia (Betulaceae) in the Qinghai-Tibet Plateau triggered by Quaternary climate change. Mol. Ecol. 23, 3013-3027. [61] Liu, Y.Y., Jin, W.T., Wei, X.X., et al., 2019. Cryptic speciation in the Chinese white pine (Pinus armandii):Implications for the high species diversity of conifers in the Hengduan Mountains, a global biodiversity hotspot. Mol. Phylogenet. Evol. 138, 114-125. [62] Liu, J., Milne, R.I., Zhu, G.F., et al., 2022. Name and scale matters:Clarifying the geography of Tibetan Plateau and adjacent mountain regions. Global Planet. Change 215, 103893. [63] Luo, D., Yue, J.P., Sun, W.G., et al., 2016. Evolutionary history of the subnival flora of the Himalaya-Hengduan Mountains:First insights from comparative phylogeography of four perennial herbs. J. Biogeogr. 43, 31-43. [64] Ma, Y., Mao, X., Wang, J., et al., 2022. Pervasive hybridization during evolutionary radiation of Rhododendron subgenus Hymenanthes in mountains of southwest China. Natl. Sci. Rev. 9, nwac276. [65] Mai, D., 2000. Die mittelmiozanen und obermiozanen Floren aus der Meuroer und Raunoer Folge in der Lausitz. Teil I:Farnpflanzen, Koniferen und Monokotyledonen. Palaeontographica, Abteilung B, Palaophytologie, 256, 1-68. [66] Malinsky, M., Svardal, H., Tyers, A.M., et al. 2018. Whole-genome sequences of Malawi cichlids reveal multiple radiations interconnected by gene flow. Nature Ecol. Evol. 457, 830. [67] Malinsky, M., Matschiner, M., Svardal, H., 2021. Dsuite-fast D-statistics and related admixture evidence from VCF files. Mol. Ecol. Resour. 21, 584-595. [68] Mallet, J., 2007. Hybrid speciation. Nature 446, 279-283. [69] Marchese, C., 2015. Biodiversity hotspots:A shortcut for a more complicated concept. Glob. Ecol. Conserv. 3, 297-309. [70] Muchhala, N., Johnsen, S., Smith, S.D., 2014. Competition for hummingbird pollination shapes flower color variation in Andean Solanaceae. Evolution 68, 2275-2286. [71] Muellner-Riehl, A.N., 2019. Mountains as evolutionary arenas:patterns, emerging approaches, paradigm shifts, and their implications for plant phylogeographic research in the Tibeto-Himalayan Region. Front. Plant Sci. 10, 195. [72] Muellner-Riehl, A.N., Schnitzler, J., Kissling, W.D., et al., 2019. Origins of global mountain plant biodiversity:Testing the 'mountain-geobiodiversity hypothesis'. J. Biogeogr. 46, 2826-2838. [73] Myers, N., Mittermeier, R. A., Mittermeier, C.G., et al., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853-858. [74] Nguyen, L.T., Schmidt, H.A., Von Haeseler, A., et al., 2015. IQ-TREE:a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268-274. [75] Nocchi, G., Wang, J., Yang, L., et al., 2023. Genomic signals of local adaptation and hybridization in Asian white birch. Mol. Ecol. 32, 595-612. [76] Pertierra, L.R., Segovia, N.I., Noll, D., et al., 2020. Cryptic speciation in gentoo penguins is driven by geographic isolation and regional marine conditions:Unforeseen vulnerabilities to global change. Divers. Distrib. 26, 958-975. [77] Phillips, S.J., Anderson, R.P., Dudik, M., et al., 2017. Opening the black box:an open-source release of Maxent. Ecography 40, 887-893. [78] Purcell, S., Neale, B., Todd-Brown, K., et al., 2007. PLINK:a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559-575. [79] Qu, X.J., Moore, M.J., Li, D.Z., et al., 2019. PGA:A software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods 15, 50. [80] R Core Team, 2020. R:A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. [81] Raj, A., Stephens, M., Pritchard, J.K., 2014. fastSTRUCTURE:variational inference of population structure in large SNP data sets. Genetics 197, 573-589. [82] Rieseberg, L.H., Willis, J.H., 2007. Plant speciation. Science 317, 910-914. [83] Rosenberg, N.E., 2004. DISTRUCT:a program for the graphical display of population structure. Mol. Ecol. Notes 4, 137-138. [84] Schenk, J.J., Axel, J., 2016. Consequences of secondary calibrations on divergence time estimates. PLoS One 11, e0148228. [85] Schley, R.J., Twyford, A.D., Pennington, R.T., 2022. Hybridization:a 'double-edged sword' for Neotropical plant diversity. Bot. J. Linn. Soc. 199, 331-356. [86] Schumer, M., Rosenthal, G.G., Andolfatto, P., 2014. How common is homoploid hybrid speciation?. Evolution 68, 1553-1560. [87] Seregin, A.P., Anackov, G., Friesen, N., 2015. Molecular and morphological revision of the Allium saxatile group (Amaryllidaceae):geographical isolation as the driving force of underestimated speciation. Bot. J. Linn. Soc. 178, 67-101. [88] Struck, T.H., Feder, J.L., Bendiksby, M., et al., 2018. Finding evolutionary processes hidden in cryptic species. Trends Ecol. Evol. 33, 153-163. [89] Sun, H., Zhang, J., Deng, T., et al., 2017. Origins and evolution of plant diversity in the Hengduan Mountains, China. Plant Divers. 39, 161-166. [90] Sun, S.S., Guo, Y.L., Favre, A., et al., 2022. Genetic differentiation and evolutionary history of two medicinal gentians (Gentiana stipitata Edgew. and Gentiana szechenyii Kanitz) in the Qinghai-Tibet Plateau. J. Appl. Res. Med. Aroma. 30, 100375. [91] Talavera, G., Castresana, J., 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564-577. [92] Tarasov, A., Vilella, A.J., Cuppen, E., et al., 2015. Sambamba:fast processing of NGS alignment formats. Bioinformatics 31, 2032-2034. [93] Vallejo-Marin, M., Hiscock, S.J., 2016. Hybridization and hybrid speciation under global change. New Phytol. 211, 1170-1187. [94] van Wyk, A.M., Dalton, D.L., Hoban, S., et al., 2017. Quantitative evaluation of hybridization and the impact on biodiversity conservation. Ecol. Evol. 7, 320-330. [95] Wan, D.S., Feng, J.J., Jiang, D.C., et al., 2016. The Quaternary evolutionary history, potential distribution dynamics, and conservation implications for a Qinghai-Tibet Plateau endemic herbaceous perennial, Anisodus tanguticus (Solanaceae). Ecol. Evol. 6, 1977-1995. [96] Wang, T.R., Meng, H.H., Wang, N., et al., 2023. Adaptive divergence and genetic vulnerability of relict species under climate change:a case study of Pterocarya macroptera. Ann. Bot. mcad083. [97] Warnock, R.C.M., Parham, J.F., Joyce, W. G., et al., 2015. Calibration uncertainty in molecular dating analyses:there is no substitute for the prior evaluation of time priors. Proc. Roy. Soc. B-Biol. Sci. 282, 20141013. [98] Weir, B.S., Cockerham, C.C., 1984. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358-1370. [99] White, O.W., Reyes-Betancort, J.A., Chapman, M.A., et al., 2020. Geographical isolation, habitat shifts and hybridisation in the diversification of the Macaronesian endemic genus Argyranthemum (Asteraceae). New Phytol. 228, 1953-1971. [100] Wright, S., 1943. Isolation by distance. Genetics 28, 114-138. [101] Wu, S., Wang, Y., Wang, Z., et al., 2022. Species divergence with gene flow and hybrid speciation on the Qinghai-Tibet Plateau. New Phytol. 234, 392-404. [102] Xing, Y., Ree, R.H., 2017. Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proc. Natl. Acad. Sci. U.S.A. 114, E3444-E3451. [103] Yang, F.S., Qin, A.L., Li, Y.F., 2012. Great genetic differentiation among populations of Meconopsis integrifolia and its implication for plant speciation in the Qinghai-Tibetan Plateau. PLoS One 7, e37196. [104] Yang, R., Folk, R., Zhang, N., et al., 2019. Homoploid hybridization of plants in the Hengduan mountains region. Ecol. Evol. 9, 8399-8410. [105] Yuan, Y.M., Kupfer, P., 1997. The monophyly and rapid evolution of Gentiana sect. Chondrophyllae Bunge s.l. (Gentianaceae):evidence from the nucleotide sequences of the internal transcribed spacers of nuclear ribosomal DNA. Bot. J. Linn. Soc. 123, 25-43. [106] Zhang, X.L., Wang, Y.J., Ge, X.J., et al., 2009. Molecular phylogeny and biogeography of Gentiana sect. Cruciata (Gentianaceae) based on four plastid DNA datasets. Taxon 58, 862-870. [107] Zhang, X., Sun, Y., Landis, J.B., et al., 2020. Genomic insights into adaptation to heterogeneous environments for the ancient relictual Circaeaster agrestis (Circaeasteraceae, Ranunculales). New Phytol. 228, 285-301. [108] Zhang, Z., Daly, J.S., Tyrrell, S., et al., 2021. Formation of the three Gorges (Yangtze River) no earlier than 10 Ma. Earth-Sci. Rev. 216, 103601. [109] Zheng, B.X., Xu, Q.Q., Shen, Y.P., 2002. The relationship between climate change and Quaternary glacial cycles on the Qinghai-Tibetan Plateau:review and speculation. Quatern. Int. 97-98, 93-101. [110] Zheng, W., Yan, L.J., Burgess, K.S., et al., 2021. Natural hybridization among three Rhododendron species (Ericaceae) revealed by morphological and genomic evidence. BMC Plant Biol. 21, 1-12. |
[1] | Kai Chen, Yan-Chun Liu, Yue Huang, Xu-Kun Wu, Hai-Ying Ma, Hua Peng, De-Zhu Li, Peng-Fei Ma. Reassessing the phylogenetic relationships of Pseudosorghum and Saccharinae (Poaceae) using plastome and nuclear ribosomal sequences[J]. Plant Diversity, 2025, 47(03): 382-393. |
[2] | Amos Kipkoech, Ke Li, Richard I. Milne, Oyetola Olusegun Oyebanji, Moses C. Wambulwa, Xiao-Gang Fu, Dennis A. Wakhungu, Zeng-Yuan Wu, Jie Liu. An integrative approach clarifies species delimitation and biogeographic history of Debregeasia (Urticaceae)[J]. Plant Diversity, 2025, 47(02): 229-243. |
[3] | Dilmurod Makhmudjanov, Sergei Volis, Ziyoviddin Yusupov, Inom Juramurodov, Komiljon Tojibaev, Tao Deng, Hang Sun. Central Asia revealed as a key area in evolution of Eremurus (Asphodelaceae)[J]. Plant Diversity, 2024, 46(03): 333-343. |
[4] | Nian Zhou, Ke Miao, Changkun Liu, Linbo Jia, Jinjin Hu, Yongjiang Huang, Yunheng Ji. Historical biogeography and evolutionary diversification of Lilium (Liliaceae): New insights from plastome phylogenomics[J]. Plant Diversity, 2024, 46(02): 219-228. |
[5] | Haibin Yu, Man Yang, Zixin Lu, Weitao Wang, Fangyuan Yu, Yonghua Zhang, Xue Yin, Hongjun Yu, Junjie Hu, David C. Deane. A phylogenetic approach identifies patterns of beta diversity and floristic subregions of the Qinghai-Tibet Plateau[J]. Plant Diversity, 2024, 46(01): 59-69. |
[6] | Yue-Wen Xu, Lu Sun, Rong Ma, Yong-Qian Gao, Hang Sun, Bo Song. Does pollinator dependence decrease along elevational gradients?[J]. Plant Diversity, 2023, 45(04): 446-455. |
[7] | Rivontsoa A. Rakotonasolo, Soejatmi Dransfield, Thomas Haevermans, Helene Ralimanana, Maria S. Vorontsova, Meng-Yuan Zhou, De-Zhu Li. New insights into intergeneric relationships of Hickeliinae (Poaceae: Bambusoideae) revealed by complete plastid genomes[J]. Plant Diversity, 2023, 45(02): 125-132. |
[8] | Shi-Yu Lv, Xia-Ying Ye, Zhong-Hu Li, Peng-Fei Ma, De-Zhu Li. Testing complete plastomes and nuclear ribosomal DNA sequences for species identification in a taxonomically difficult bamboo genus Fargesia[J]. Plant Diversity, 2023, 45(02): 147-155. |
[9] | Yan-Ling Xu, Hao-Hua Shen, Xin-Yu Du, Lu Lu. Plastome characteristics and species identification of Chinese medicinal wintergreens (Gaultheria, Ericaceae)[J]. Plant Diversity, 2022, 44(06): 519-529. |
[10] | Yao-Ke Li, Julian Harber, Chuan Peng, Zhi-Qiang Du, Yao-Wu Xing, Chih-Chieh Yu. Taxonomic synopsis of Berberis (Berberidaceae) from the northern Hengduan mountains region in China, with descriptions of seven new species[J]. Plant Diversity, 2022, 44(05): 505-517. |
[11] | Mengqing Zhe, Le Zhang, Fang Liu, Yiwei Huang, Weishu Fan, Junbo Yang, Andan Zhu. Plastid RNA editing reduction accompanied with genetic variations in Cymbidium, a genus with diverse lifestyle modes[J]. Plant Diversity, 2022, 44(03): 316-321. |
[12] | Shiou Yih Lee, Ke-Wang Xu, Cui-Ying Huang, Jung-Hyun Lee, Wen-Bo Liao, Yong-Hong Zhang, Qiang Fan. Molecular phylogenetic analyses based on the complete plastid genomes and nuclear sequences reveal Daphne (Thymelaeaceae) to be non-monophyletic as current circumscription[J]. Plant Diversity, 2022, 44(03): 279-289. |
[13] | Jia-Xin Yang, Shuai Peng, Jun-Jie Wang, Shi-Xiong Ding, Yan Wang, Jing Tian, Han Yang, Guang-Wan Hu, Qing-Feng Wang. Morphological and genomic evidence for a new species of Corallorhiza (Orchidaceae: Epidendroideae) from SW China[J]. Plant Diversity, 2021, 43(05): 409-419. |
[14] | Xiaoping Li, Yamei Zhao, Xiongde Tu, Chengru Li, Yating Zhu, Hui Zhong, Zhong-Jian Liu, Shasha Wu, Junwen Zhai. Comparative analysis of plastomes in Oxalidaceae: Phylogenetic relationships and potential molecular markers[J]. Plant Diversity, 2021, 43(04): 281-291. |
[15] | Xinhui Li, Tao Yang, Dandan Wang. Phylogenetic and functional structures of succession in plant communities on mounds of Marmota himalayana in alpine regions on the northeast edge of the Qinghai-Tibet Plateau[J]. Plant Diversity, 2021, 43(04): 275-280. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||