Plant Diversity ›› 2023, Vol. 45 ›› Issue (02): 147-155.DOI: 10.1016/j.pld.2022.04.002
Shi-Yu Lva,b, Xia-Ying Yec, Zhong-Hu Lia, Peng-Fei Mab, De-Zhu Lib,d
收稿日期:
2022-03-24
修回日期:
2022-04-05
出版日期:
2023-03-25
发布日期:
2023-06-13
通讯作者:
Peng-Fei Ma,E-mail:mapengfei@mail.kib.ac.cn;De-Zhu Li,E-mail:dzl@mail.kib.ac.cn
基金资助:
Shi-Yu Lva,b, Xia-Ying Yec, Zhong-Hu Lia, Peng-Fei Mab, De-Zhu Lib,d
Received:
2022-03-24
Revised:
2022-04-05
Online:
2023-03-25
Published:
2023-06-13
Contact:
Peng-Fei Ma,E-mail:mapengfei@mail.kib.ac.cn;De-Zhu Li,E-mail:dzl@mail.kib.ac.cn
Supported by:
摘要: Fargesia, the largest genus within the temperate bamboo tribe Arundinarieae, has more than 90 species mainly distributed in the mountains of Southwest China. The Fargesia bamboos are important components of the subalpine forest ecosystems that provide food and habitat for many endangered animals, including the giant panda. However, species-level identification of Fargesia is difficult. Moreover, the rapid radiation and slow molecular evolutionary rate of Fargesia pose a significant challenge to using DNA barcoding with standard plant barcodes (rbcL, matK, and ITS) in bamboos. With progress in the sequencing technologies, complete plastid genomes (plastomes) and nuclear ribosomal DNA (nrDNA) sequences have been proposed as organelle barcodes for species identification; however, these have not been tested in bamboos. We collected 196 individuals representing 62 species of Fargesia to comprehensively evaluate the discriminatory power of plastomes and nrDNA sequences compared to standard barcodes. Our analysis indicates that complete plastomes have substantially higher discriminatory power (28.6%) than standard barcodes (5.7%), whereas nrDNA sequences show a moderate improvement (65.4%) compared to ITS (47.2%). We also found that nuclear markers performed better than plastid markers, and ITS alone had higher discriminatory power than complete plastomes. The study also demonstrated that plastomes and nrDNA sequences can contribute to intrageneric phylogenetic resolution in Fargesia. However, neither of these sequences were able to discriminate all the sampled species, and therefore, more nuclear markers need to be identified.
Shi-Yu Lv, Xia-Ying Ye, Zhong-Hu Li, Peng-Fei Ma, De-Zhu Li. Testing complete plastomes and nuclear ribosomal DNA sequences for species identification in a taxonomically difficult bamboo genus Fargesia[J]. Plant Diversity, 2023, 45(02): 147-155.
Shi-Yu Lv, Xia-Ying Ye, Zhong-Hu Li, Peng-Fei Ma, De-Zhu Li. Testing complete plastomes and nuclear ribosomal DNA sequences for species identification in a taxonomically difficult bamboo genus Fargesia[J]. Plant Diversity, 2023, 45(02): 147-155.
[1] BPG, 2012. An updated tribal and subtribal classification for the Bambusoideae (Poaceae), in: Gielis, J. and Potters, G. (Eds.), Proceedings of the Ninth World Bamboo Congress. Antwerp, World Bamboo Organization, Belgium, pp. 3-27. [2] Cai, Z.M., Zhang, Y.X., Zhang, L.N., et al., 2012. Testing four candidate barcoding markers in temperate woody bamboos (Poaceae: Bambusoideae). J. Syst. Evol. 50, 527-539. [3] CBOL Plant Working Group, 2009. A DNA barcode for land plants. Proc. Natl. Acad. Sci. U.S.A. 106, 12794-12797. [4] China Plant BOL Group, 2011. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc. Natl. Acad. Sci. U.S.A. 108, 19641-19646. [5] Chao, C.S., Chu, C.D. and Hsiung, W.Y., 1980. A revision of some genera and species of Chinese bamboos. Acta. Phytotax. Sin. 18, 20-36. [6] Chao, C.S. and Renvoize, S.A., 1989. A revision of the species described under Arundinaria (Gramineae) in Southeast Asia and Africa. Kew Bull. 44, 349-367. [7] Coissac, E., Hollingsworth, P.M., Lavergne, S., et al., 2016. From barcodes to genomes: extending the concept of DNA barcoding. Mol. Ecol. 25, 1423-1428. [8] Du, F.K., Petit, R.J. and Liu, J.Q., 2009. More introgression with less gene flow: chloroplast vs. mitochondrial DNA in the Picea asperata complex in China, and comparison with other conifers. Mol. Ecol. 18, 1396-1407. [9] Ekblom, R. and Galindo, J., 2011. Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107, 1-15. [10] Fu, C.N., Mo, Z.Q., Yang, J.B., et al., 2022. Testing genome skimming for species discrimination in the large and taxonomically difficult genus Rhododendron. Mol. Ecol. Resour. 22, 404-414. [11] Fu, C.N., Wu, C.S., Ye, L.J., et al., 2019. Prevalence of isomeric plastomes and effectiveness of plastome super-barcodes in yews (Taxus) worldwide. Sci. Rep. 9, 2773. [12] Grabherr, M.G., Haas, B.J., Yassour, M., et al., 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644-652. [13] Guo, C., Guo, Z.H. and Li, D.Z., 2019. Phylogenomic analyses reveal intractable evolutionary history of a temperate bamboo genus (Poaceae: Bambusoideae). Plant Divers. 41, 213-219. [14] Guo, C., Ma, P.F., Yang, G.Q., et al., 2021. Parallel ddRAD and genome skimming analyses reveal a radiative and reticulate evolutionary history of the temperate bamboos. Syst. Biol. 70, 756-773. [15] Guo, Z.H., Chen, Y.Y., Li, D.Z., et al., 2001. Genetic variation and evolution of the alpine bamboos (Poaceae: Bambusoideae) using DNA sequence data. J. Plant Res. 114, 315-322. [16] Guo, Z.H. and Li, D.Z., 2004. Phylogenetics of the Thamnocalamus group and its allies (Gramineae: Bambusoideae): inference from the sequences of GBSSI gene and ITS spacer. Mol. Phylogenet. Evol. 30, 1-12. [17] Hebert, P.D.N., Cywinska, A., Ball, S.L., et al., 2003. Biological identifications through DNA barcodes. Proc. R. Soc. B 270, 313-321. [18] Hollingsworth, P.M., Graham, S.W. and Little, D.P., 2011. Choosing and using a plant DNA barcode. PLoS One 6, e19254. [19] Hollingsworth, P.M., Li, D.Z., van der Bank, M., et al., 2016. Telling plant species apart with DNA: from barcodes to genomes. Philos. Trans. R. Soc. B 371, 20150338. [20] Hsueh, C.J. and Li, D.Z., 1987. New taxa of Bambusoideae from Sichuan and Yunnan, with discussion on concepts of related genera. J. Bamboo Res. 6, 16-19. [21] Janzen, D.H., 1976. Why Bamboos Wait So Long to Flower. Rev. Ecol. Syst. 7, 347-391. [22] Ji, Y.H., Liu, C.K., Yang, Z.Y., et al., 2019. Testing and using complete plastomes and ribosomal DNA sequences as the next generation DNA barcodes in Panax (Araliaceae). Mol. Ecol. Resour. 19, 1333-1345. [23] Jin, J.J., Yu, W.B., Yang, J.B., et al., 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 241. [24] Kane, N., Sveinsson, S., Dempewolf, H., et al., 2012. Ultra-barcoding in cacao (Theobroma spp.; Malvaceae) using whole chloroplast genomes and nuclear ribosomal DNA. Am. J. Bot. 99, 320-329. [25] Katoh, K. and Standley, D.M., 2013. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 30, 772-780. [26] Kearse, M., Moir, R., Wilson, A., et al., 2012. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647-1649. [27] Keng, P.C. and Wen, T.H., 1989. A preliminary study on bamboo classification according to the vegetative characters. J. Bamboo Res. 8, 17-29. [28] Kumar, S., Stecher, G., Li, M., et al., 2018. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 35, 1547-1549. [29] Li, D.Z., Guo, Z.H., Stapleton, C.M.A., 2006. Fargesia, Yushania, in: Wu, Z.Y. and Raven, P.H. (Eds.), Flora of China (Poaceae). Science Press and Missouri Botanical Garden Press, Beijing and St. Louis, pp. 74-96. [30] Li, D.Z., Zeng, C.X., 2015. Prospects for plant DNA barcoding. Biodiv. Sci. 23, 297-298. [31] Ma, P.F., Vorontsova, M.S., Nanjarisoa, O.P., et al., 2017. Negative correlation between rates of molecular evolution and flowering cycles in temperate woody bamboos revealed by plastid phylogenomics. BMC Plant Biol. 17, 260. [32] Ma, P.F., Zhang, Y.X., Zeng, C.X., et al., 2014. Chloroplast phylogenomic analyses resolve deep-Level relationships of an intractable bamboo tribe Arundinarieae (Poaceae). Syst. Biol. 63, 933-950. [33] McNeely, J.A., 1996. Biodiversity and bamboo genetic resources in Asia: in situ community-based and ex situ approaches to conservation. Chin. Biodivers. 7, 38-51. [34] Petit, R.J. and Excoffier, L., 2009. Gene flow and species delimitation. Trends Ecol. Evol. 24, 386-393. [35] Qu, X.J., Moore, M.J., Li, D.Z., et al., 2019. PGA: a software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Meth. 15, 50. [36] Ruhsam, M., Rai, H.S., Mathews, S., et al., 2015. Does complete plastid genome sequencing improve species discrimination and phylogenetic resolution in Araucaria? Mol. Ecol. Resour. 15, 1067-1078. [37] Smith, D.R., 2013. RNA-Seq data: a goldmine for organelle research. Brief. Funct. Genomics 12, 454-456. [38] Smith, M.A., Fisher, B.L. and Hebert, P.D.N., 2005. DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar. Philos. Trans. R. Soc. B 360, 1825-1834. [39] Soderstrom, T.R., 1979. Another Name for the Umbrella Bamboo. Brittonia 31, 495-495. [40] Soderstrom, T.R., 1981. Some evolutionary trends in the Bambusoideae (Poaceae). Ann. Mo. Bot. Gard. 68, 15-47. [41] Soderstrom, T.R. and Ellis, R.P., 1987. The position of bamboo genera and allies in a system of grass classifcation, in: Soderstrom, T.R., Hilu, K.W., Campbell, S. and Barkworth, M.E. (Eds.), Grass systematics and evolution. Institution Press, Washington, DC, pp. 225-238. [42] Stamatakis, A., 2006. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688-2690. [43] Stapleton, C.M.A., Chonghaile, G.N., Hodkinson, T.R., 2009. Molecular phylogeny of Asian woody bamboos: Review for the Flora of China. Bamboo Science and Culture: J. Am. Bamb. Soc. 22, 5-25. [44] Straub, S.C.K., Parks, M., Weitemier, K., et al., 2012. Navigating the tip of the genomic iceberg: Next-generation sequencing for plant systematics. Am. J. Bot. 99, 349-364. [45] Triplett, J.K. and Clark, L.G., 2010. Phylogeny of the temperate bamboos (Poaceae: Bambusoideae: Bambuseae) with an emphasis on Arundinaria and allies. Syst. Bot. 35, 102-120. [46] Triplett, J.K., Clark, L.G., Fisher, A.E., et al., 2014. Independent allopolyploidization events preceded speciation in the temperate and tropical woody bamboos. New Phytol. 204, 66-73. [47] Wang, X.Q., Ye, X.Y., Zhao, L., et al., 2017. Genome-wide RAD sequencing data provide unprecedented resolution of the phylogeny of temperate bamboos (Poaceae: Bambusoideae). Sci. Rep. 7, 11546. [48] Yang, H.M., Zhang, Y.X., Yang, J.B., et al., 2013. The monophyly of Chimonocalamus and conflicting gene trees in Arundinarieae (Poaceae: Bambusoideae) inferred from four plastid and two nuclear markers. Mol. Phylogenet. Evol. 68, 340-356. [49] Yang, J.B., Li, D.Z. and Li, H.T., 2014. Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs. Mol. Ecol. Resour. 14, 1024-1031. [50] Ye, X.Y., Ma, P.F., Guo, C., et al., 2021. Phylogenomics of Fargesia and Yushania reveals a history of reticulate evolution. J. Syst. Evol. 59, 1183-1197. [51] Ye, X.Y., Ma, P.F., Yang, G.Q., et al., 2019. Rapid diversification of alpine bamboos associated with the uplift of the Hengduan Mountains. J. Biogeogr. 46, 2678-2689. [52] Yi, T.P., 1985a. Classifcation and distribution of the food bamboos of the giant panda (I). J. Bamboo Res. 4, 11-27. [53] Yi, T.P., 1985b. Classifcation and distribution of the food bamboos of the giant panda (II). J. Bamboo Res. 4, 20-45. [54] Yi, T.P., 1996. Fargesia, Yushania, in: Geng, P.C. and Wang, Z.P. (Eds.), Flora Reipublicae Popularis Sinicae. Science Press, Beijing, pp. 387-560. [55] Zeng, C.X., Zhang, Y.X., Triplett, J.K., et al., 2010. Large multi-locus plastid phylogeny of the tribe Arundinarieae (Poaceae: Bambusoideae) reveals ten major lineages and low rate of molecular divergence. Mol. Phylogenet. Evol. 56, 821-839. [56] Zhang, D., Gao, F.L., Jakovlic, I., et al., 2020a. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 20, 348-355. [57] Zhang, Y.X., Guo, C., Li, D.Z., 2020b. A new subtribal classification of Arundinarieae (Poaceae, Bambusoideae) with the description of a new genus. Plant Divers. 42, 127-134. [58] Zhang, L.N., Ma, P.F., Zhang, Y.X., et al., 2019a. Using nuclear loci and allelic variation to disentangle the phylogeny of Phyllostachys (Poaceae, Bambusoideae). Mol. Phylogenet. Evol. 137, 222-235. [59] Zhang, Y.Q., Wang, X.M., Wu, A.L., et al., 2014. Merging Fargesia dracocephala into Fargesia decurvata (Bambusoideae, Poaceae): Implications from morphological and ITS sequence analyses. PLoS One 9, e101362. [60] Zhang, Y.Q., Zhou, Y., Hou, X.Q., et al., 2019b. Phylogeny of Fargesia (Poaceae: Bambusoideae) and infrageneric adaptive divergence inferred from three cpDNA and nrITS sequence data. Plant Syst. Evol. 305, 61-75. [61] Zhou, Y., Li, W.W., Zhang, Y.Q., et al., 2020. Extensive reticulate evolution within Fargesia (s.l.) (Bambusoideae: Poaceae) and its allies: Evidence from multiple nuclear markers. Mol. Phylogenet. Evol. 149, 106842. [62] Zhou, Y., Zhang, Y.Q., Xing, X.C., et al., 2019. Straight from the plastome: molecular phylogeny and morphological evolution of Fargesia (Bambusoideae: Poaceae). Front. Plant Sci. 10, 981. [63] Zhu, A.D., Guo, W.H., Gupta, S., et al., 2016. Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates. New Phytol. 209, 1747-1756. |
[1] | Kai Chen, Yan-Chun Liu, Yue Huang, Xu-Kun Wu, Hai-Ying Ma, Hua Peng, De-Zhu Li, Peng-Fei Ma. Reassessing the phylogenetic relationships of Pseudosorghum and Saccharinae (Poaceae) using plastome and nuclear ribosomal sequences[J]. Plant Diversity, 2025, 47(03): 382-393. |
[2] | Amos Kipkoech, Ke Li, Richard I. Milne, Oyetola Olusegun Oyebanji, Moses C. Wambulwa, Xiao-Gang Fu, Dennis A. Wakhungu, Zeng-Yuan Wu, Jie Liu. An integrative approach clarifies species delimitation and biogeographic history of Debregeasia (Urticaceae)[J]. Plant Diversity, 2025, 47(02): 229-243. |
[3] | Dilmurod Makhmudjanov, Sergei Volis, Ziyoviddin Yusupov, Inom Juramurodov, Komiljon Tojibaev, Tao Deng, Hang Sun. Central Asia revealed as a key area in evolution of Eremurus (Asphodelaceae)[J]. Plant Diversity, 2024, 46(03): 333-343. |
[4] | Peng-Cheng Fu, Qiao-Qiao Guo, Di Chang, Qing-Bo Gao, Shan-Shan Sun. Cryptic diversity and rampant hybridization in annual gentians on the Qinghai-Tibet Plateau revealed by population genomic analysis[J]. Plant Diversity, 2024, 46(02): 194-205. |
[5] | Hai-Su Hu, Jiu-Yang Mao, Xue Wang, Yu-Ze Liang, Bei Jiang, De-Quan Zhang. Plastid phylogenomics and species discrimination in the “Chinese” clade of Roscoea (Zingiberaceae)[J]. Plant Diversity, 2023, 45(05): 523-534. |
[6] | Rivontsoa A. Rakotonasolo, Soejatmi Dransfield, Thomas Haevermans, Helene Ralimanana, Maria S. Vorontsova, Meng-Yuan Zhou, De-Zhu Li. New insights into intergeneric relationships of Hickeliinae (Poaceae: Bambusoideae) revealed by complete plastid genomes[J]. Plant Diversity, 2023, 45(02): 125-132. |
[7] | Yan-Ling Xu, Hao-Hua Shen, Xin-Yu Du, Lu Lu. Plastome characteristics and species identification of Chinese medicinal wintergreens (Gaultheria, Ericaceae)[J]. Plant Diversity, 2022, 44(06): 519-529. |
[8] | Yao-Ke Li, Julian Harber, Chuan Peng, Zhi-Qiang Du, Yao-Wu Xing, Chih-Chieh Yu. Taxonomic synopsis of Berberis (Berberidaceae) from the northern Hengduan mountains region in China, with descriptions of seven new species[J]. Plant Diversity, 2022, 44(05): 505-517. |
[9] | Mengqing Zhe, Le Zhang, Fang Liu, Yiwei Huang, Weishu Fan, Junbo Yang, Andan Zhu. Plastid RNA editing reduction accompanied with genetic variations in Cymbidium, a genus with diverse lifestyle modes[J]. Plant Diversity, 2022, 44(03): 316-321. |
[10] | Shiou Yih Lee, Ke-Wang Xu, Cui-Ying Huang, Jung-Hyun Lee, Wen-Bo Liao, Yong-Hong Zhang, Qiang Fan. Molecular phylogenetic analyses based on the complete plastid genomes and nuclear sequences reveal Daphne (Thymelaeaceae) to be non-monophyletic as current circumscription[J]. Plant Diversity, 2022, 44(03): 279-289. |
[11] | Jia-Xin Yang, Shuai Peng, Jun-Jie Wang, Shi-Xiong Ding, Yan Wang, Jing Tian, Han Yang, Guang-Wan Hu, Qing-Feng Wang. Morphological and genomic evidence for a new species of Corallorhiza (Orchidaceae: Epidendroideae) from SW China[J]. Plant Diversity, 2021, 43(05): 409-419. |
[12] | Xiaoping Li, Yamei Zhao, Xiongde Tu, Chengru Li, Yating Zhu, Hui Zhong, Zhong-Jian Liu, Shasha Wu, Junwen Zhai. Comparative analysis of plastomes in Oxalidaceae: Phylogenetic relationships and potential molecular markers[J]. Plant Diversity, 2021, 43(04): 281-291. |
[13] | Bibo Yang, Liangda Li, Jianquan Liu, Lushui Zhang. Plastome and phylogenetic relationship of the woody buckwheat Fagopyrum tibeticum in the Qinghai-Tibet Plateau[J]. Plant Diversity, 2021, 43(03): 198-205. |
[14] | Luxian Liu, Yonghua Zhang, Pan Li. Development of genomic resources for the genus Celtis (Cannabaceae) based on genome skimming data[J]. Plant Diversity, 2021, 43(01): 43-53. |
[15] | Han-Rui Bai, Oyetola Oyebanji, Rong Zhang, Ting-Shuang Yi. Plastid phylogenomic insights into the evolution of subfamily Dialioideae (Leguminosae)[J]. Plant Diversity, 2021, 43(01): 27-34. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||