Plant Diversity ›› 2017, Vol. 39 ›› Issue (05): 287-293.DOI: 10.1016/j.pld.2017.08.004
Guoqi Chena,b, Wei Zhanga,b, Jiapeng Fanga,b, Liyao Donga,b
收稿日期:
2017-02-22
修回日期:
2017-08-28
出版日期:
2017-10-25
发布日期:
2021-11-05
通讯作者:
Liyao Dong
基金资助:
Guoqi Chena,b, Wei Zhanga,b, Jiapeng Fanga,b, Liyao Donga,b
Received:
2017-02-22
Revised:
2017-08-28
Online:
2017-10-25
Published:
2021-11-05
Contact:
Liyao Dong
Supported by:
摘要: Echinochloa phyllopogon proliferation seriously threatens rice production worldwide. We combined a restriction-site associated DNA (RAD) approach with Illumina DNA sequencing for rapid and mass discovery of simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers for E. phyllopogon. RAD tags were generated from the genomic DNA of two E. phyllopogon plants, and sequenced to produce 5197.7 Mb and 5242.9 Mb high quality sequences, respectively. The GC content of E. phyllopogon was 45.8%, which is high for monocots. In total, 4710 putative SSRs were identified in 4132 contigs, which permitted the design of PCR primers for E. phyllopogon. Most repeat motifs among the SSRs identified were dinucleotide (>82%), and most of these SSRs were four motif-repeats (>75%). The most frequent motif was AT, accounting for 36.3%-37.2%, followed by AG and AC. In total, 78 putative polymorphic SSR loci were found. A total of 49,179 SNPs were discovered between the two samples of E. phyllopogon, 67.1% of which were transversions and 32.9% were transitions. We used eight SSRs to study the genetic diversity of four E. phyllopogon populations collected from rice fields in China and all eight loci tested were polymorphic.
Guoqi Chen, Wei Zhang, Jiapeng Fang, Liyao Dong. Identification of massive molecular markers in Echinochloa phyllopogon using a restriction-site associated DNA approach[J]. Plant Diversity, 2017, 39(05): 287-293.
Guoqi Chen, Wei Zhang, Jiapeng Fang, Liyao Dong. Identification of massive molecular markers in Echinochloa phyllopogon using a restriction-site associated DNA approach[J]. Plant Diversity, 2017, 39(05): 287-293.
Baird, N.A., Etter, P.D., Atwood, T.S., et al., 2008. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3, e3376. Barchi, L., Lanteri, S., Portis, E., et al., 2011. Identification of SNP and SSR markers in eggplant using RAD tag sequencing. BMC Genomics 12. Catchen, J.M., Amores, A., Hohenlohe, P., et al., 2011. Stacks: building and genotyping loci De Novo from short-read sequences. G3 Genes Genomes Genet. 1, 171-182. Danquah, E.Y., Hanley, S.J., Brookes, R.C., et al., 2002. Isolation and characterization of microsatellites in Echinochloa (L.) Beauv. spp. Mol. Ecol. Notes 2, 54-56. Flora of China, 2015. Available from: www.efloras.org. Gupta, S.K., Baek, J., Carrasquilla-Garcia, N., et al., 2015. Genome-wide polymorphism detection in peanut using next-generation restriction-site-associated DNA (RAD) sequencing. Mol. Breed. 35. Heap, I., 2015. The International Survey of Herbicide Resistant Weeds, 2015.Available from: www.weedscience.org. Holm, L.G., Pancho, J.V., Herberger, J.P., 1979. A Geographical Atlas of World Weeds.John Wiley and Sons, New York. Kaya, H.B., Demirci, M., Tanyolac, B., 2014. Genetic structure and diversity analysis revealed by AFLP on different Echinochloa spp. from northwest Turkey. Plant Syst. Evol. 300, 1337-1347. Kruglyak, L., 1997. The use of a genetic map of biallelic markers in linkage studies.Nat. Genet. 17, 21-24. Lee, J., Park, K.W., Lee, I.Y., et al., 2015. Simple sequence repeat analysis of genetic diversity among acetyl-CoA carboxylase inhibitor-resistant and -susceptible Echinochloa crus-galli and E. oryzicola populations in Korea. Weed Res. 55, 90-100. Miller, M.R., Dunham, J.P., Amores, A., et al., 2007. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res. 17, 240-248. Meirmans, P.G., Van Tienderen, P.H., 2004. GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol. Ecol. Notes 4, 792-794. Nozawa, S., Takahashi, M., Nakai, H., et al., 2006. Difference in SSR variations between japanese barnyard millet (Echinochloa esculenta) and its wild relative. E.crus-galli. Breed. Sci. 56, 335-340. Okada, M., Hanson, B.D., Hembree, K.J., et al., 2013. Evolution and spread of glyphosate resistance in Conyza canadensis in California. Evol. Appl. 6, 761-777. Orjuela, J., Garavito, A., Bouniol, M., et al., 2010. A universal core genetic map for rice. Theor. Appl. Genet. 120, 563-572. Osuna, M.D., Okada, M., Ahmad, R., et al., 2011. Genetic diversity and spread of thiobencarb resistant early watergrass (Echinochloa oryzoides) in California.Weed Sci. 59, 195-201. Peakall, R., Smouse, P.E., 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and researchdan update. Bioinformatics 28, 2537-2539. Raats, D., Frenkel, Z., Krugman, T., et al., 2013. The physical map of wheat chromosome 1BS provides insights into its gene space organization and evolution.Genome Biol. 14, 19. Rao, A.N., Johnson, D.E., Sivaprasad, B., et al., 2007. Weed management in directseeded rice. In: Donald, L.S. (Ed.), Advances in Agronomy. Academic Press, pp. 153-255. Šmarda, P., Bures, P., Horova, L., et al., 2014. Ecological and evolutionary signi ficance of genomic GC content diversity in monocots. Proc. Natl. Acad. Sci. U. S. A. 111, E4096-E4102. Sun, J.T., Wang, M.M., Zhang, Y.K., et al., 2015. Evidence for high dispersal ability and mito-nuclear discordance in the small brown planthopper, Laodelphax striatellus. Sci. Rep. 5, 8045. Tabacchi, M., Mantegazza, R., Spada, A., et al., 2006. Morphological traits and molecular markers for classification of Echinochloa species from Italian rice fields.Weed Sci. 54, 1086-1093. Talukder, Z.I., Gong, L., Hulke, B.S., et al., 2014. A high-density SNP map of sunflower derived from RAD-sequencing facilitating fine-mapping of the rust resistance gene R12. PLoS One 9, e98628. Teixeira, H., Rodríguez-Echeverría, S., Nabais, C., 2014. Genetic diversity and differentiation of Juniperus thurifera in Spain and Morocco as determined by SSR.PLoS One 9, e88996. Temnykh, S., DeClerck, G., Lukashova, A., et al., 2001. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res. 11, 1441-1452. Vandepitte, K., Honnay, O., Mergeay, J., et al., 2013. SNP discovery using Paired-End RAD-tag sequencing on pooled genomic DNA of Sisymbrium austriacum (Brassicaceae). Mol. Ecol. Resour. 13, 269-275. Vidotto, F., Tesio, F., Tabacchi, M., et al., 2007. Herbicide sensitivity of Echinochloa spp. accessions in Italian rice fields. Crop Prot. 26, 285-293. Wang, Y., Yang, C., Jin, Q.J., et al., 2015. Genome-wide distribution comparative and composition analysis of the SSRs in Poaceae. BMC Genet. 16, 8. Yamasue, Y., 2001. Strategy of Echinochloa oryzicola Vasing. for survival in flooded rice. Weed Biol. Manag. 1, 28-36. Zhang, Q., Ma, B., Li, H., et al., 2012. Identification, characterization, and utilization of genome-wide simple sequence repeats to identify a QTL for acidity in apple.BMC Genomics 13. Zhang, Y., Zalapa, J., Jakubowski, A., et al., 2011. Post-glacial evolution of Panicum virgatum: centers of diversity and gene pools revealed by SSR markers and cpDNA sequences. Genetica 139, 933-948. |
[1] | Javier Hernández-Velasco, José Ciro Hernández-Díaz, Sergio Leonel Simental-Rodríguez, Juan P. Jaramillo-Correa, David S. Gernandt, José Jesús Vargas-Hernández, Ilga Porth, Roos Goessen, M. Socorro González-Elizondo, Matthias Fladung, Cuauhtémoc Sáenz-Romero, José Guadalupe Martínez-Ávalos, Artemio Carrillo-Parra, Eduardo Mendoza-Maya, Arnulfo Blanco-García, Christian Wehenkel. Causes of heterozygosity excess: The case of Mexican populations of Populus tremuloides[J]. Plant Diversity, 2025, 47(03): 415-428. |
[2] | Peng-Cheng Fu, Qiao-Qiao Guo, Di Chang, Qing-Bo Gao, Shan-Shan Sun. Cryptic diversity and rampant hybridization in annual gentians on the Qinghai-Tibet Plateau revealed by population genomic analysis[J]. Plant Diversity, 2024, 46(02): 194-205. |
[3] | Feng-Luan Liu, Ya-Lan Dai, Thi Nga Hoang, Vichai Puripunyavanich, Primlarp Wasuwat Chukiatman, Mi Qin, Yan-Rong Fu, Yu-Chu Chen, Dai-Ke Tian. Genetic diversity and inferred ancestry of Asian lotus (Nelumbo nucifera) germplasms in Thailand and Vietnam[J]. Plant Diversity, 2023, 45(01): 69-79. |
[4] | Qi-Yue Zhou, Hui-Xia Cai, Zi-Han Liu, Lang-Xing Yuan, Lei Yang, Tuo Yang, Bo Li, Pan Li. Development of genomic resources for Wenchengia alternifolia (Lamiaceae) based on genome skimming data[J]. Plant Diversity, 2022, 44(06): 542-551. |
[5] | Xiaxia Li, Lijun Qiao, Birong Chen, Yujie Zheng, Chengchen Zhi, Siyu Zhang, Yupeng Pan, Zhihui Cheng. SSR markers development and their application in genetic diversity evaluation of garlic (Allium sativum) germplasm[J]. Plant Diversity, 2022, 44(05): 481-491. |
[6] | Hanqing Tang, Lu Tang, Shicheng Shao, Yulan Peng, Lu Li, Yan Luo. Chloroplast genomic diversity in Bulbophyllum section Macrocaulia (Orchidaceae, Epidendroideae, Malaxideae): Insights into species divergence and adaptive evolution[J]. Plant Diversity, 2021, 43(05): 350-361. |
[7] | Ziyoviddin Yusupov, Tao Deng, Sergei Volis, Furkat Khassanov, Dilmurod Makhmudjanov, Komiljon Tojibaev, Hang Sun. Phylogenomics of Allium section Cepa (Amaryllidaceae) provides new insights on domestication of onion[J]. Plant Diversity, 2021, 43(02): 102-110. |
[8] | Luxian Liu, Yonghua Zhang, Pan Li. Development of genomic resources for the genus Celtis (Cannabaceae) based on genome skimming data[J]. Plant Diversity, 2021, 43(01): 43-53. |
[9] | Yun Jia, Ji-Qing Bai, Mi-Li Liu, Zhen-Fang Jiang, Yan Wu, Min-Feng Fang, Zhong-Hu Li. Transcriptome analysis of the endangered Notopterygium incisum: Cold-tolerance gene discovery and identification of EST-SSR and SNP markers[J]. Plant Diversity, 2019, 41(01): 1-6. |
[10] | Ruisen Lu, Wuqin Xu, Qixiang Lu, Pan Li, Jocelyn Losh, Faiza Hina, Enxiang Li, Yingxiong Qiu. Generation and classification of transcriptomes in two Croomia species and molecular evolution of CYC/TB1 genes in Stemonaceae[J]. Plant Diversity, 2018, 40(06): 253-264. |
[11] | Yunhua Wang, Nan Li, Ting Chen, Yiqing Gong. Generation and characterization of expressed sequence tags (ESTs) from coralloid root cDNA library of Cycas debaoensis[J]. Plant Diversity, 2018, 40(05): 245-252. |
[12] | Huan-Lei Zhang, Jian-Jun Jin, Michael J. Moore, Ting-Shuang Yi, De-Zhu Li. Plastome characteristics of Cannabaceae[J]. Plant Diversity, 2018, 40(03): 127-137. |
[13] | Reyna Maya-García, Santiago Arizaga, Pablo Cuevas-Reyes, Juan Manuel Pe?aloza-Ramírez, Víctor Rocha Ramírez, Ken Oyama. Landscape genetics reveals inbreeding and genetic bottlenecks in the extremely rare short-globose cacti Mammillaria pectinifera (Cactaceae) as a result of habitat fragmentation[J]. Plant Diversity, 2017, 39(01): 13-19. |
[14] | 张荣1、2, 冯秀彦1、2, 龚洵1. 七种菊科植物SSR标记在大黄橐吾和奇形橐吾杂交区类群中的通用性检测[J]. Plant Diversity, 2015, 37(4): 416-422. |
[15] | 余亚莹1, 邵高能1, 圣忠华1, 蒋汉伟2, 贺记外1, 孙园园2, 蔡怡聪1, 胡培松1**, 唐绍清1. 国内外香稻资源遗传多样性研究[J]. Plant Diversity, 2015, 37(06): 871-880. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||