[1] Kumar A. Phytochemistry, pharmacological activities and uses of traditional medicinal plant Kaempferia galanga L.—an overview. J Ethnopharmacol. 2020;253:112667. [2] Hashiguchi A, San M, Duangsodsri TT, Kusano Kazuo M, Watanabe N. Biofunctional properties and plant physiology of Kaempferia spp: status and trends. J Funct Foods. 2022;92:105029. [3] Khairullah Aswin R, Sholikhah TI, Ansori ANM, Hanisia RH, Puspitarani GA, Fadholly A, et al. Medicinal importance of Kaempferia galanga L. (Zingiberaceae): a comprehensive review. J Herbmed Pharmacol. 2021;10(3):281-8. [4] Sulaiman MR, Zakaria ZA, Daud IA, Ng FN, Ng YC, Hidayat MT. Antinociceptive and anti-inflammatory activities of the aqueous extract of Kaempferia galanga leaves in animal models. J Nat Med. 2008;62(2):221-7. [5] Srivastava N, Mishra S, Iqbal H, Chanda D, Shanker K. Standardization of Kaempferia galanga L. rhizome and vasorelaxation effect of its key metabolite ethyl p-methoxycinnamate. J Ethnopharmacol. 2021;271:113911. [6] Ridtitid W, Sae-wong C, Reanmongkol W, Wongnawa M. Antinociceptive activity of the methanolic extract of Kaempferia galanga Linn. in experimental animals. J Ethnopharmacol. 2008;118(2):225-30. [7] Liu H, Chen Y, Hu Y, Zhang W, Zhang H. Protective effects of an alcoholic extract of Kaempferia galanga L. rhizome on ethanol-induced gastric ulcer in mice. J Ethnopharmacol. 2024;325:117845. [8] Surya R, Romulo A, Nurkolis F, Kumalawati DA. Natural products in beverages. Cham: Springer; 2025. p. 307-39. [9] Wang SY, Zhao H, Xu H, Han X, Wu Y. Kaempferia galanga L.: Progresses in phytochemistry, pharmacology, toxicology and ethnomedicinal uses. Front Pharmacol. 2021;12:675350. [10] Ferrer JL, Austin MB, Stewart C, Noel JP. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem. 2008;46(3):356-70. [11] Zhu Y, Chen L, Zeng J, Xu J, Hu H, He X, et al. Six new phenylpropanoids from Kaempferia galanga L. and their anti-inflammatory activity. Fitoterapia. 2024;176:106028. [12] Yang P, Jia Q, Song S, Huang X. [2 + 2]-Cycloaddition-derived cyclobutane natural products: structural diversity, sources, bioactivities, and biomimetic syntheses. Nat Prod Rep. 2023;40(6):1094-129. [13] Van der Kolk MR, Janssen MACH, Rutjes FPJT, Blanco-Ania D. Cyclobutanes in small-molecule drug candidates. Chem Med Chem. 2022;17(9):20. [14] Li J, Gao K, Bian M, Ding H. Recent advances in the total synthesis of cyclobutane-containing natural products. Org Chem Front. 2019;7(1):136-54. [15] Namyslo JC, Kaufmann DE. The application of cyclobutane derivatives in organic synthesis. Chem Rev. 2003;103(4):1485-538. [16] Schrader A, Jakupovic J, Baltes W. Photochemical reaction products of 4-methoxycinnamic acid-3′-methylbutyl ester. Tetrahedron Lett. 1994;35(8):1169-72. [17] Yang XW, Li YL, Li SM, Shen YH, Tian JM, Zhu ZJ, et al. Mono- and sesquiterpenoids, flavonoids, lignans, and other miscellaneous compounds of Abies georgei. Planta Med. 2010;77:742-8. [18] Boruwa J, Borah JC, Kalita B, Barua NC. Highly regioselective ring opening of epoxides using NaN3: a short and efficient synthesis of (-)-cytoxazone. Tetrahedron Lett. 2004;45(39):7355-8. [19] Umar MI, Asmawi MZ, Sadikun A, Atangwho I, Yam M, Altaf R, et al. Bioactivity-guided isolation of ethyl-p-methoxycinnamate, an anti-inflammatory constituent, from Kaempferia galanga L. extracts. Molecules. 2012;17(7):7. [20] Gadgoli C, Mishra SH. Antihepatotoxic activity of p-methoxy benzoic acid from Capparis spinosa. J Ethnopharmacol. 1999;66(2):187-92. [21] Wang JS, Wu K, Yin C, Li K, Huang Y, Ruan J, et al. Cage-confined photocatalysis for wide-scope unusually selective [2 + 2] cycloaddition through visible-light triplet sensitization. Nat Commun. 2020;11(1):4675. [22] Tiz DB, Tofani G, Vicente FA, Likozar B. Chemical synthesis of monolignols: traditional methods, recent advances, and future challenges in sustainable processes. Antioxidants. 2024;13(11):1387. [23] Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454:7203. [24] Bogdan C. Nitric oxide and the immune response. Nat Immunol. 2001;2(10):907-16. [25] Othman R, Ibrahim H, Mohd MA, Awang K, Gilani AH, Mustafa MR. Vasorelaxant effects of ethyl cinnamate isolated from Kaempferia galanga on smooth muscles of the rat aorta. Planta Med. 2002;68:655-7. [26] Umar MI, Asmawi MZ, Sadikun A, Majid AMS, Alsuede FS, Hassan LEA, et al. Ethyl-p-methoxycinnamate isolated from Kaempferia galanga inhibits inflammation by suppressing interleukin-1, tumor necrosis factor-α, and angiogenesis by blocking endothelial functions. Clinics. 2014;69(2):134-44. [27] Fuchino H, Fukui N, Iida O, Wada H, Kawahara N. Inhibitory effect of black ginger (Kaempferia parviflora) constituents on nitric oxide production. J Food Chem Safety. 2018;25:152-9. [28] Miyazawa S, Sakai M, Omae Y, Ogawa Y, Shigemori H, Miyamae Y. Anti-inflammatory effect of covalent PPARγ ligands that have a hybrid structure of GW9662 and a food-derived cinnamic acid derivative. Biosci Biotechnol Biochem. 2024;88(10):1136-43. |