[1] Li M, Chi X, Wang Y, Setrerrahmane S, Xie W, Xu H. Trends in insulin resistance: insights into mechanisms and therapeutic strategy. Signal Transduct Target Ther. 2022. https://doi.org/10.1038/s41392-022-01073-0. [2] Taylor SI, Yazdi ZS, Beitelshees AL. Pharmacological treatment of hyperglycemia in type 2 diabetes. J Clin Invest. 2021. https://doi.org/10.1172/jci142243. [3] Infante M, Leoni M, Caprio M, Fabbri A. Long-term metformin therapy and vitamin B12 deficiency: an association to bear in mind. World J Diabetes. 2021;12(7):916-31. https://doi.org/10.4239/wjd.v12.i7.916. [4] Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2012;35(6):1364-79. https://doi.org/10.2337/dc12-0413. [5] Rosenstock J, Hansen L, Zee P, Li Y, Cook W, Hirshberg B, et al. Dual add-on therapy in type 2 diabetes poorly controlled with metformin monotherapy: a randomized double-blind trial of saxagliptin plus dapagliflozin addition versus single addition of saxagliptin or dapaglif lozin to metformin. Diabetes Care. 2015;38(3):376-83. https://doi.org/10.2337/dc14-1142. [6] Sylow L, Tokarz VL, Richter EA, Klip A. The many actions of insulin in skeletal muscle, the paramount tissue determining glycemia. Cell Metab. 2021;33(4):758-80. https://doi.org/10.1016/j.cmet.2021.03.020. [7] Ramos PA, Lytle KA, Delivanis D, Nielsen S, Lebrasseur NK, Jensen MD. Insulin-stimulated muscle glucose uptake and insulin signaling in lean and obese humans. J Clin Endocrinol Metab. 2021;106(4):E1631-46. https://doi.org/10.1210/clinem/dgaa919. [8] Menting JG, Whittaker J, Margetts MB, Whittaker LJ, Kong GKW, Smith BJ, et al. How insulin engages its primary binding site on the insulin receptor. Nature. 2013;493(7431):241-5. https://doi.org/10.1038/nature11781. [9] Contreras-Ferrat A, Llanos P, Vásquez C, Espinosa A, Osorio-Fuentealba C, Arias-Calderon M, et al. Insulin elicits a ROS-activated and an IP?-dependent Ca2? release, which both impinge on GLUT4 translocation. J Cell Sci. 2014;127:1911-23. https://doi.org/10.1242/jcs.138982. [10] Espinosa A, Estrada M, Jaimovich E. IGF-I and insulin induce different intracellular calcium signals in skeletal muscle cells. J Endocrinol. 2004;182(2):339-51. https://doi.org/10.1677/joe.0.1820339. [11] Lin SC, Hardie DG. AMPK: sensing glucose as well as cellular energy status. Cell Metab. 2018;27(2):299-313. https://doi.org/10.1016/j.cmet.2017.10.009. [12] Entezari M, Hashemi D, Taheriazam A, Zabolian A, Mohammadi S, Fakhri F, et al. AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: a pre-clinical and clinical investigation. Biomed Pharmacother. 2022. https://doi.org/10.1016/j.biopha.2021.112563. [13] Liu X, Luo D, Guan J, Chen J, Xu X. Mushroom polysaccharides with potential in anti-diabetes: biological mechanisms, extraction, and future perspectives: a review. Front Nutr. 2022. https://doi.org/10.3389/fnut.2022.1087826. [14] Ratnaningtyas NI, Hernayanti H, Ekowati N, Husen F. Ethanol extract of the mushroom Coprinus comatus exhibits antidiabetic and antioxidant activities in streptozotocin-induced diabetic rats. Pharm Biol. 2022;60(1):1126-36. https://doi.org/10.1080/13880209.2022.2074054. [15] Wu SJ, Tung YJ, Ng LT. Anti-diabetic effects of Grifola frondosa bioactive compound and its related molecular signaling pathways in palmitate-induced C2C12 cells. J Ethnopharmacol. 2020. https://doi.org/10.1016/j.jep.2020.112962. [16] Chantarasakha K, Yangchum A, Isaka M, Tepaamorndech S. Fungal depsidones stimulate AKT-dependent glucose uptake in 3T3-L1 adipocytes. J Nat Prod. 2024;87(7):1673-81. https://doi.org/10.1021/acs.jnatprod.3c01134. [17] Likitnukul S, Tepaarmorndech S, Kaewamatawong T, Yangchum A, Duangtha C, Jongjang P, et al. Pyridylnidulin exerts anti-diabetic properties and improves non-alcoholic fatty liver disease in diet-induced obesity mice. Front Mol Biosci. 2023. https://doi.org/10.3389/fmolb.2023.1208215. [18] Isaka M, Yangchum A, Supothina S, Veeranondha S, Komwijit S, Phongpaichit S. Semisynthesis and antibacterial activities of nidulin derivatives. J Antibiot. 2019;72(3):181-4. https://doi.org/10.1038/s41429-018-0133-0. [19] Morshed MT, Vuong D, Crombie A, Lacey AE, Karuso P, Lacey E, et al. Expanding antibiotic chemical space around the nidulin pharmacophore. Org Biomol Chem. 2018;16(16):3038-51. https://doi.org/10.1039/c8ob00545a. [20] Asplund J, Solhaug KA, Gauslaa Y. Fungal depsidones-an inducible or constitutive defence against herbivores in the lichen Lobaria pulmonaria? Basic Appl Ecol. 2009;10(3):273-8. https://doi.org/10.1016/j.baae.2008.04.003. [21] Ure?a-Vacas I, González-Burgos E, Divakar PK, Gómez-Serranillos MP. Lichen depsidones with biological interest. Planta Med. 2022;88(11):855-80. https://doi.org/10.1055/a-1482-6381. [22] Merz KE, Thurmond DC. Role of skeletal muscle in insulin resistance and glucose uptake. Compr Physiol. 2020;10(3):785-809. https://doi.org/10.1002/cphy.c190029. [23] DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care. 2009;32:S157-63. https://doi.org/10.2337/dc09-S302. [24] Ebersbach-Silva P, Poletto AC, David-Silva A, Seraphim PM, Anhê GF, Passarelli M, et al. Palmitate-induced Slc2a4/GLUT4 downregulation in L6 muscle cells: evidence of inflammatory and endoplasmic reticulum stress involvement. Lipids Health Dis. 2018. https://doi.org/10.1186/s12944-018-0714-8. [25] Brown JB, Nichols GA, Perry A. The burden of treatment failure in type 2 diabetes. Diabetes Care. 2004;27(7):1535-40. https://doi.org/10.2337/diacare.27.7.1535. [26] Yuzefovych L, Wilson G, Rachek L. Different effects of oleate vs. palmitate on mitochondrial function, apoptosis, and insulin signaling in L6 skeletal muscle cells: role of oxidative stress. Am J Physiol Endocrinol Metab. 2010;299(6):E1096-105. https://doi.org/10.1152/ajpendo.00238.2010. [27] O’Neill HM. AMPK and exercise: glucose uptake and insulin sensitivity. Diabetes Metab J. 2013;37(1):1-21. https://doi.org/10.4093/dmj.2013.37.1.1. [28] Xi X, Han J, Zhang J-Z. Stimulation of glucose transport by AMP-activated protein kinase via activation of p38 mitogen-activated protein kinase*. J Biol Chem. 2001;276(44):41029-34. https://doi.org/10.1074/jbc.M102824200. [29] Harmon AW, Paul DS, Patel YM. MEK inhibitors impair insulin-stimulated glucose uptake in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab. 2004;287(4):E758-66. https://doi.org/10.1152/ajpendo.00581.2003. [30] Hansen PA, Gulve EA, Marshall BA, Gao J, Pessin JE, Holloszy JO, et al. Skeletal muscle glucose transport and metabolism are enhanced in transgenic mice overexpressing the Glut4 glucose transporter. J Biol Chem. 1995;270(4):1679-84. https://doi.org/10.1074/jbc.270.5.1679. [31] Carvalho E, Kotani K, Peroni OD, Kahn BB. Adipose-specific overexpression of GLUT4 reverses insulin resistance and diabetes in mice lacking GLUT4 selectively in muscle. Am J Physiol Endocrinol Metab. 2005;289:E551-61. https://doi.org/10.1152/ajpendo.00116.2005. [32] Virkam?ki A, Ueki K, Kahn CR. Protein-protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J Clin Invest. 1999;103(7):931-43. https://doi.org/10.1172/JCI6609. [33] Yunn NO, Kim J, Ryu SH, Cho Y. A stepwise activation model for the insulin receptor. Exp Mol Med. 2023;55(10):2147-61. https://doi.org/10.1038/s12276-023-01101-1. [34] Boura-Halfon S, Zick Y. Phosphorylation of IRS proteins, insulin action, and insulin resistance. Am J Physiol Endocrinol Metab. 2009;296(4):E581-91. https://doi.org/10.1152/ajpendo.90437.2008. [35] Hotamisligil GS, Budavari A, Murray D, Spiegelman BM. Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes. Central role of tumor necrosis factor-alpha. J Clin Invest. 1994;94(4):1543-9. https://doi.org/10.1172/jci117495. [36] Youngren JF, Paik J, Barnard RJ. Impaired insulin-receptor autophosphorylation is an early defect in fat-fed, insulin-resistant rats. J Appl Physiol. 2001;91(5):2240-7. https://doi.org/10.1152/jappl.2001.91.5.2240. [37] Lin B, Li Z, Park K, Deng L, Pai A, Zhong L, et al. Identification of novel orally available small molecule insulin mimetics. J Pharmacol Exp Ther. 2007;323(2):579-85. https://doi.org/10.1124/jpet.107.126102. [38] Zhang B, Salituro G, Szalkowski D, Li Z, Zhang Y, Royo I, et al. Discovery of a small molecule insulin mimetic with antidiabetic activity in mice. Science. 1999;284(5416):974-7. https://doi.org/10.1126/science.284.5416.974. [39] Salituro GM, Pelaez F, Zhang BB. Discovery of a small molecule insulin receptor activator. Recent Prog Horm Res. 2001;56:107-26. https://doi.org/10.1210/rp.56.1.107. [40] Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α- and obesity-induced insulin resistance. Science. 1996;271(5249):665-8. https://doi.org/10.1126/science.271.5249.665. [41] Espinosa A, García A, H?rtel S, Hidalgo C, Jaimovich E. NADPH oxidase and hydrogen peroxide mediate insulin-induced calcium increase in skeletal muscle cells. J Biol Chem. 2009;284(4):2568-75. https://doi.org/10.1074/jbc.M804249200. [42] Hansen LL, Ikeda Y, Olsen GS, Busch AK, Mosthaf L. Insulin signaling is inhibited by micromolar concentrations of H2O2. Evidence for a role of H2O2 in tumor necrosis factor α-mediated insulin resistance. J Biol Chem. 1999;274(35):25078-84. https://doi.org/10.1074/jbc.274.35.25078. [43] Tiganis T. Reactive oxygen species and insulin resistance: the good, the bad and the ugly. Trends Pharmacol Sci. 2011;32(2):82-9. https://doi.org/10.1016/j.tips.2010.11.006. [44] Iwakami S, Misu H, Takeda T, Sugimori M, Matsugo S, Kaneko S, et al. Concentration-dependent dual effects of hydrogen peroxide on insulin signal transduction in H4IIEC hepatocytes. PLoS ONE. 2011. https://doi.org/10.1371/journal.pone.0027401. [45] Loh K, Deng H, Fukushima A, Cai X, Boivin B, Galic S, et al. Reactive oxygen species enhance insulin sensitivity. Cell Metab. 2009;10(4):260-72. https://doi.org/10.1016/j.cmet.2009.08.009. [46] Anderson EJ, Lustig ME, Boyle KE, Woodlief TL, Kane DA, Lin CT, et al. Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J Clin Invest. 2009;119(3):573-81. https://doi.org/10.1172/JCI37048. [47] Ma M, Quan Y, Li Y, He X, Xiao J, Zhan M, et al. Bidirectional modulation of insulin action by reactive oxygen species in 3T3-L1 adipocytes. Mol Med Rep. 2018;18(1):807-14. https://doi.org/10.3892/mmr.2018.9016. [48] Ebrahim HY, Elsayed HE, Mohyeldin MM, Akl MR, Bhattacharjee J, Egbert S, et al. Norstictic acid inhibits breast cancer cell proliferation, migration, invasion, and in vivo invasive growth through targeting C-Met. Phytother Res. 2016;30(4):557-66. https://doi.org/10.1002/ptr.5551. [49] Shukla I, Azmi L, Rao CV, Jawaid T, Kamal M, Awaad AS, et al. Hepatoprotective activity of depsidone enriched Cladonia rangiferina extract against alcohol-induced hepatotoxicity targeting cytochrome P450 2E1 induced oxidative damage. Saudi Pharm J. 2020;28(4):519-27. https://doi.org/10.1016/j.jsps.2020.03.003. [50] Huang L, Tepaamorndech S, Kirschke CP, Newman JW, Keyes WR, Pedersen TL, et al. Aberrant fatty acid metabolism in skeletal muscle contributes to insulin resistance in zinc transporter 7 (znt7)-knockout mice. J Biol Chem. 2018;293(20):7549-63. https://doi.org/10.1074/jbc.M117.817692. [51] Huang L, Kirschke CP, Lay YAE, Levy LB, Lamirande DE, Zhang PH. Znt7-null mice are more susceptible to diet-induced glucose intolerance and insulin resistance. J Biol Chem. 2012;287(40):33883-96. https://doi.org/10.1074/jbc.M111.309666. [52] Tepaamorndech S, Kirschke CP, Pedersen TL, Keyes WR, Newman JW, Huang L. Zinc transporter 7 deficiency affects lipid synthesis in adipocytes by inhibiting insulin-dependent Akt activation and glucose uptake. FEBS J. 2016;283(2):378-94. https://doi.org/10.1111/febs.13582. |