Natural Products and Bioprospecting ›› 2025, Vol. 15 ›› Issue (5): 42-42.DOI: 10.1007/s13659-025-00527-6
• ORIGINAL ARTICLE • Previous Articles Next Articles
Ernest Oppong-Danquah1, Jana Heumann1, Hannah Moosbauer1, Martina Blümel1, Arlette Wenzel-Storjohann1, Deniz Tasdemir1,2
Received:2025-04-24
Online:2025-11-06
Contact:
Deniz Tasdemir,E-mail:dtasdemir@geomar.de
Supported by:Ernest Oppong-Danquah1, Jana Heumann1, Hannah Moosbauer1, Martina Blümel1, Arlette Wenzel-Storjohann1, Deniz Tasdemir1,2
通讯作者:
Deniz Tasdemir,E-mail:dtasdemir@geomar.de
基金资助:Ernest Oppong-Danquah, Jana Heumann, Hannah Moosbauer, Martina Blümel, Arlette Wenzel-Storjohann, Deniz Tasdemir. Bioprospecting cultivable bacteria associated with deep sea (mesopelagic) fish of the North Atlantic Ocean[J]. Natural Products and Bioprospecting, 2025, 15(5): 42-42.
Ernest Oppong-Danquah, Jana Heumann, Hannah Moosbauer, Martina Blümel, Arlette Wenzel-Storjohann, Deniz Tasdemir. Bioprospecting cultivable bacteria associated with deep sea (mesopelagic) fish of the North Atlantic Ocean[J]. 应用天然产物, 2025, 15(5): 42-42.
| [1] Blockley A, Elliott DR, Roberts AP, Sweet M. Symbiotic microbes from marine invertebrates: driving a new era of natural product drug discovery. Diversity. 2017;9:49. https://doi.org/10.3390/d9040049. [2] Ngo-Mback MNL, Menkem EZO, Marco HG. Antifungal compounds from microbial symbionts associated with aquatic animals and cellular targets: a review. Pathogens. 2023. https://doi.org/10.3390/pathogens12040617. [3] Ghareeb MA, Tammam MA, El-Demerdash A, Atanasov AG. Insights about clinically approved and preclinically investigated marine natural products. Curr Res Biotechnol. 2020;2:88-102. https://doi.org/10.1016/j.crbiot.2020.09.001. [4] Collins FWJ, Walsh CJ, Gomez-Sala B, Guijarro-García E, Stokes D, Jakobsdóttir KB, et al. The microbiome of deep-sea fish reveals new microbial species and a sparsity of antibiotic resistance genes. Gut microbes. 2021;13:1-13. https://doi.org/10.1080/19490976.2021.1921924. [5] Rawls JF, Samuel BS, Gordon JI. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. PNAS. 2004;101:4596-601. https://doi.org/10.1073/pnas.0400706101. [6] Jisha K, Gayathri G, Gopikrishnan V, Song J, Soytong K, Prabha T. Fish gut microbiota: a source of novel metabolites-a review article. IJAT. 2023;19:459-74. [7] Uniacke-Lowe S, Stanton C, Hill C, Ross RP. The marine fish gut microbiome as a source of novel bacteriocins. Microorganisms. 2024;12:1346. https://doi.org/10.3390/microorganisms12071346. [8] Li Q, Chen Q, Wu Y, Chen Z, Liu Y, Fang Z, et al. Purification, characterization and structural identification of a novel bacteriocin produced by marine original Enterococcus durans YQ-6, and its inhibition of Listeria monocytogenes. LWT. 2023;173: 114329. https://doi.org/10.1016/j.lwt.2022.114329. [9] Sanchez LM, Wong WR, Riener RM, Schulze CJ, Linington RG. Examining the fish microbiome: vertebrate-derived bacteria as an environmental niche for the discovery of unique marine natural products. PLoS ONE. 2012;7: e35398. https://doi.org/10.1371/journal.pone.0035398. [10] Elbanna AH, Khalil ZG, Bernhardt PV, Capon RJ. Chrysosporazines a-e: P-glycoprotein inhibitory piperazines from an Australian marine fish gastrointestinal tract-derived fungus, Chrysosporium sp. CMB-F214. Org Lett. 2019;21:8097-100. https://doi.org/10.1021/acs.orglett.9b03094. [11] Mohamed OG, Salim AA, Khalil ZG, Elbanna AH, Bernhardt PV, Capon RJ. Chrysosporazines f-m: P-glycoprotein inhibitory phenylpropanoid piperazines from an Australian marine fish derived fungus, Chrysosporium sp. CMB-F294. J Nat Prod. 2020;83:497-504. https://doi.org/10.1021/acs.jnatprod.9b01181. [12] Ghotbi M, Kelting O, Blümel M, Tasdemir D. Gut and gill-associated microbiota of the flatfish European plaice (Pleuronectes platessa): diversity, metabolome and bioactivity against human and aquaculture pathogens. Mar Drugs. 2022;20:1-25. https://doi.org/10.3390/md20090573. [13] López-Pérez C, Olivar MP, Tuset VM, Bernal A, Hulley PA. Energy density of mesopelagic fishes from the Atlantic Ocean. J Fish Biol. 2023;102:924-35. https://doi.org/10.1111/jfb.15331. [14] Franz GP, Warth P, Grunow B, Konstantinidis P. Osteology of the white barracudina, Arctozenus risso (Bonaparte)(Aulopiformes: Paralepididae). Ichthyol Herpetol. 2022;110:115-30. https://doi.org/10.1643/i2020130. [15] Marohn L, Schaber M, Freese M, Pohlmann JD, Wysujack K, Czudaj S, et al. Distribution and diel vertical migration of mesopelagic fishes in the Southern Sargasso Sea — observations through hydroacoustics and stratified catches. Mar Biodivers. 2021;51:87. https://doi.org/10.1007/s12526-021-01216-6. [16] Kapelonis Z, Siapatis A, Machias A, Somarakis S, Markakis K, Giannoulaki M, et al. Seasonal patterns in the mesopelagic fish community and associated deep scattering layers of an enclosed deep basin. Sci Rep. 2023;13:17890. https://doi.org/10.1038/s41598-023-44765-5. [17] Reading J, Horton T. Mesopelagic fishes of the North-West African upwelling from the discovery collections. Biodivers Data J. 2023;11: e105921. https://doi.org/10.3897/BDJ.11.e105921. [18] Buonocore F, Gerdol M. Alternative adaptive immunity strategies: coelacanth, cod and shark immunity. Mol Immunol. 2016;69:157-69. https://doi.org/10.1016/j.molimm.2015.09.003. [19] Romano G, Costantini M, Sansone C, Lauritano C, Ruocco N, Ianora A. Marine microorganisms as a promising and sustainable source of bioactive molecules. Mar Environ Res. 2017;128:58-69. https://doi.org/10.1016/j.marenvres.2016.05.002. [20] Collins FWJ. An investigation into antimicrobial production in the Lactobacillus genus and the fish microbiome. Cork: University College Cork; 2019. [21] Uniacke-Lowe S, Collins FWJ, Hill C, Ross RP. Bioactivity screening and genomic analysis reveals deep-sea fish microbiome isolates as sources of novel antimicrobials. Mar Drugs. 2023;21: 444. https://doi.org/10.3390/md21080444. [22] Iacuaniello CM. An examination of intestinal microbiota of mesopelagic fish reveals microbial community diversity across fish families. La Jolla: University of California San Diego; 2019. [23] Nothias L-F, Petras D, Schmid R, Dührkop K, Rainer J, Sarvepalli A, et al. Feature-based molecular networking in the GNPS analysis environment. Nat Methods. 2020;17:905-8. https://doi.org/10.1038/s41592-020-0933-6. [24] Dührkop K, Fleischauer M, Ludwig M, Aksenov AA, Melnik AV, Meusel M, et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat Methods. 2019;16:299-302. https://doi.org/10.1038/s41592-019-0344-8. [25] Dührkop K, Shen H, Meusel M, Rousu J, Böcker S. Searching molecular structure databases with tandem mass spectra using CSI: FingerID. Proc Natl Acad Sci U S A. 2015;112:12580-5. [26] Dührkop K, Nothias L-F, Fleischauer M, Reher R, Ludwig M, Hoffmann MA, et al. Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat Biotechnol. 2020. https://doi.org/10.1038/s41587-020-0740-8. [27] Kim HW, Wang M, Leber CA, Nothias L-F, Reher R, Kang KB, et al. NPclassifier: a deep neural network-based structural classification tool for natural products. J Nat Prod. 2021;84:2795-807. https://doi.org/10.1021/acs.jnatprod.1c00399. [28] Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol. 2016;34:828-37. https://doi.org/10.1038/nbt.3597. [29] Liu B, Lu R, Chen N, Yuan H, Zhao J, Zhao Y. Research progress on activity and biosynthesis of diketopiperazines. Mini-Rev Org Chem. 2024;21:891-906. https://doi.org/10.2174/1570193X20666230512162559. [30] Vitale GA, January GG, Oppong-Danquah E, Della Sala G, Palma Esposito F, Tasdemir D, et al. A metabologenomics approach to unlock the metabolome of the novel Antarctic deep-sea isolate Lacinutrix shetlandiensis sp. nov. WUR7. PNAS Nexus. 2023. https://doi.org/10.1093/pnasnexus/pgad221. [31] Yin H, Chen H, Yan M, Li Z, Yang R, Li Y, et al. Efficient bioproduction of indigo and indirubin by optimizing a novel terpenoid cyclase XiaI in Escherichia coli. ACS Omega. 2021;6:20569-76. https://doi.org/10.1021/acsomega.1c02679. [32] Li H, Shinde PB, Lee HJ, Yoo ES, Lee C-O, Hong J, et al. Bile acid derivatives from a sponge-associated bacterium Psychrobacter sp. Arch Pharm Res. 2009;32:857-62. https://doi.org/10.1007/s12272-009-1607-1. [33] Breusing C, Osborn KJ, Girguis PR, Reese AT. Composition and metabolic potential of microbiomes associated with mesopelagic animals from Monterey Canyon. ISME Commun. 2022;2: 117. https://doi.org/10.1038/s43705-022-00195-4. [34] Oppong-Danquah E, Miranda M, Blümel M, Tasdemir D. Bioactivity profiling and untargeted metabolomics of microbiota associated with mesopelagic jellyfish Periphylla periphylla. Mar Drugs. 2023;21: 129. https://doi.org/10.3390/md21020129. [35] Sun P, Wang Y, Huang X, Xu S, Logares R, Huang Y, et al. Cracking the dynamic code of the deep: unexpected seasonal patterns of active protistan-bacterial microbiomes in the mesopelagic zone of the South China Sea. Prog Oceanogr. 2024;225: 103280. https://doi.org/10.1016/j.pocean.2024.103280. [36] Gharibzahedi SMT, Razavi SH, Mousavi M. Potential applications and emerging trends of species of the genus Dietzia: a review. Ann Microbiol. 2014;64:421-9. https://doi.org/10.1007/s13213-013-0699-5. [37] Li J, Tan B, Mai K, Ai Q, Zhang W, Xu W, et al. Comparative study between probiotic bacterium Arthrobacter XE-7 and chloramphenicol on protection of Penaeus chinensis post-larvae from pathogenic vibrios. Aquaculture. 2006;253:140-7. https://doi.org/10.1016/j.aquaculture.2005.07.040. [38] Brodl E, Winkler A, Macheroux P. Molecular mechanisms of bacterial bioluminescence. Comput Struct Biotechnol J. 2018;16:551-64. https://doi.org/10.1016/j.csbj.2018.11.003. [39] Le Doujet T, De Santi C, Klemetsen T, Hjerde E, Willassen N-P, Haugen P. Closely-related Photobacterium strains comprise the majority of bacteria in the gut of migrating Atlantic cod (Gadus morhua). Microbiome. 2019;7:64. https://doi.org/10.1186/s40168-019-0681-y. [40] Kim PS, Shin N-R, Lee J-B, Kim M-S, Whon TW, Hyun D-W, et al. Host habitat is the major determinant of the gut microbiome of fish. Microbiome. 2021;9:166. https://doi.org/10.1186/s40168-021-01113-x. [41] Richards TA, Jones MD, Leonard G, Bass D. Marine fungi: their ecology and molecular diversity. Annu Rev Mar Sci. 2012;4:495-522. https://doi.org/10.1146/annurev-marine-120710-100802. [42] Oppong-Danquah E, Parrot D, Blümel M, Labes A and Tasdemir D. Molecular networking-based metabolome and bioactivity analyses of marine-adapted fungi co-cultivated with phytopathogens. Front. Microbiol. 2018;9:2072. https://doi.org/10.3389/fmicb.2018.02072. [43] Bingjie LR, Fu BW, Xingzhong L, Meichun X. Rock-inhabiting fungi: terminology, diversity, evolution and adaptation mechanisms. Mycology. 2022;13:1-31. https://doi.org/10.1080/21501203.2020.1799878. [44] Masschelein J, Jenner M, Challis GL. Antibiotics from Gram-negative bacteria: a comprehensive overview and selected biosynthetic highlights. Nat Prod Rep. 2017;34:712-83. https://doi.org/10.1039/C7NP00010C. [45] Soltani M, Baldisserotto B, Hosseini Shekarabi SP, Shafiei S, Bashiri M. Lactococcosis a re-emerging disease in aquaculture: disease significant and phytotherapy. Vet Sci. 2021;8:1-22. https://doi.org/10.3390/vetsci8090181. [46] Geiger O, González-Silva N, López-Lara IM, Sohlenkamp C. Amino acid-containing membrane lipids in bacteria. Prog Lipid Res. 2010;49:46-60. https://doi.org/10.1016/j.plipres.2009.08.002. [47] Moore EK, Hopmans EC, Rijpstra WIC, Sanchez Andrea I, Villanueva L, Wienk H, et al. Lysine and novel hydroxylysine lipids in soil bacteria: amino acid membrane lipid response to temperature and pH in Pseudopedobacter saltans. Front Microbiol. 2015. https://doi.org/10.3389/fmicb.2015.00637. [48] Sohlenkamp C, Geiger O. Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev. 2015;40:133-59. https://doi.org/10.1093/femsre/fuv008. [49] Hasan A, Yeom H-S, Ryu J, Bode HB, Kim Y. Phenylethylamides derived from bacterial secondary metabolites specifically inhibit an insect serotonin receptor. Sci Rep. 2019;9:20358. https://doi.org/10.1038/s41598-019-56892-z. [50] Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019. https://doi.org/10.3390/microorganisms7010014. [51] Mohanty I, Mannochio-Russo H, Schweer JV, El Abiead Y, Bittremieux W, Xing S, et al. The underappreciated diversity of bile acid modifications. Cell. 2024;187(1801-1818): e1820. https://doi.org/10.1016/j.cell.2024.02.019. [52] Wang L, Sagada G, Wang C, Liu R, Li Q, Zhang C, et al. Exogenous bile acids regulate energy metabolism and improve the health condition of farmed fish. Aquaculture. 2023;562: 738852. https://doi.org/10.1016/j.aquaculture.2022.738852. [53] Sanchez LM, Cheng AT, Warner CJA, Townsley L, Peach KC, Navarro G, et al. Biofilm formation and detachment in Gram-negative pathogens is modulated by select bile acids. PLoS ONE. 2016;11(3): e0149603. https://doi.org/10.1371/journal.pone.0149603. [54] Liu S, Yang S, Blazekovic B, Li L, Zhang J, Wang Y. Bioactivities, mechanisms, production, and potential application of bile acids in preventing and treating infectious diseases. Engineering. 2024;38:13-26. https://doi.org/10.1016/j.eng.2023.11.017. [55] Chianese G, Esposito F, Parrot D, Ingham C, de Pascale D, Tasdemir D. Linear Aminolipids with moderate antimicrobial activity from the Antarctic gram-negative bacterium Aequorivita sp. Mar Drugs. 2018;16:187. https://doi.org/10.3390/md16060187. [56] Ström K, Sjögren J, Broberg A, Schnürer J. Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Appl Environ Microbiol. 2002;68:4322-7. https://doi.org/10.1128/aem.68.9.4322-4327.2002. [57] Waclawiková B, Bullock A, Schwalbe M, Aranzamendi C, Nelemans SA, van Dijk G, et al. Gut bacteria-derived 5-hydroxyindole is a potent stimulant of intestinal motility via its action on L-type calcium channels. PLoS Biol. 2021;19: e3001070. https://doi.org/10.1371/journal.pbio.3001070. [58] Jia J, Yao J, Kong J, Yu A, Wei J, Dong Y, She G. 2, 5-diketopiperazines: a review of source, synthesis, bioactivity, structure, and MS fragmentation. Curr Med Chem. 2023;30:1060-85. https://doi.org/10.2174/0929867329666220801143650. [59] Bindiya ES, Tina KJ, Raghul SS, Bhat SG. Characterization of deep sea fish gut bacteria with antagonistic potential, from Centroscyllium fabricii (Deep Sea Shark). Probiotics Antimicrob Proteins. 2015;7:157-63. https://doi.org/10.1007/s12602-015-9190-x. [60] Hirano K, Nakai T, Nagai T, Takada K, Fujii S, Sambongi Y, et al. Isolation and characterization of bacteria from the gut of a mesopelagic copepod Cephalophanes reflugens (Copepoda: Calanoida). J Plankton Res. 2023;46:48-58. https://doi.org/10.1093/plankt/fbad049. [61] Utermann C, Echelmeyer VA, Oppong-Danquah E, Blümel M, Tasdemir D. Diversity, bioactivity profiling and untargeted metabolomics of the cultivable gut microbiota of Ciona intestinalis. Mar Drugs. 2021;19:1-25. https://doi.org/10.3390/md19010006. [62] Utermann C, Parrot D, Breusing C, Stuckas H, Staufenberger T, Blümel M, et al. Combined genotyping, microbial diversity and metabolite profiling studies on farmed Mytilus spp. from Kiel Fjord. Sci Rep. 2018;8:1-13. https://doi.org/10.1038/s41598-018-26177-y. [63] Fan B, Parrot D, Blümel M, Labes A, Tasdemir D. Influence of OSMAC-based cultivation in metabolome and anticancer activity of fungi associated with the brown Alga Fucus vesiculosus. Mar Drugs. 2019;17:1-25. https://doi.org/10.3390/md17010067. [64] Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol. 2012;30:918-20. https://doi.org/10.1038/nbt.2377. [65] Schmid R, Heuckeroth S, Korf A, Smirnov A, Myers O, Dyrlund TS, et al. Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nat Biotechnol. 2023;41:447-9. https://doi.org/10.1038/s41587-023-01690-2. [66] Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498-504. https://doi.org/10.1101/gr.1239303. [67] Oppong-Danquah E, Blümel M, Tasdemir D. Metabolomics and microbiomics insights into differential surface fouling of three macroalgal species of fucus (Fucales Phaeophyceae) that co-exist in the German baltic sea. Mar Drugs. 2023;21(11):595. https://doi.org/10.3390/md21110595 |
| [1] | Joan Labara Tirado, Andrei Herdean, Peter J. Ralph. The need for smart microalgal bioprospecting [J]. Natural Products and Bioprospecting, 2025, 15(1): 7-7. |
| [2] | Shohreh Ariaeenejad, Javad Gharechahi, Mehdi Foroozandeh Shahraki, Fereshteh Fallah Atanaki, Jian-Lin Han, Xue-Zhi Ding, Falk Hildebrand, Mohammad Bahram, Kaveh Kavousi, Ghasem Hosseini Salekdeh. Precision enzyme discovery through targeted mining of metagenomic data [J]. Natural Products and Bioprospecting, 2024, 14(1): 7-7. |
| [3] | Donatus Wewura Adongo, Charles Kwaku Benneh, Augustine Tandoh, Robert Peter Biney, Kennedy Kwami Edem Kukuia, Priscilla Kolibea Mante, Benjamin Kingsley Harley, David Oteng, Emmanuel Aduboffour Appiah, Ernest Cudjoe Anorbor, Eric Woode. Anxiolytic-like effects of Pseudospondias microcarpa hydroethanolic leaf extract in zebrafish: Possible involvement of GABAergic and serotonergic pathways [J]. Natural Products and Bioprospecting, 2023, 13(5): 33-33. |
| [4] | Kalyani Bindu Karunakaran, Anand Thiyagaraj, Kirankumar Santhakumar. Novel insights on acetylcholinesterase inhibition by Convolvulus pluricaulis, scopolamine and their combination in zebrafish [J]. Natural Products and Bioprospecting, 2022, 12(1): 1-15. |
| [5] | Euloge S. Adjou, René G. Dègnon, Edwige Dahouenon-Ahoussi, Mohamed M. Soumanou, Dominique C. K. Sohounhloue. Improvement of Fermented Fish Flour Quality Using Essential Oil Extracted From Fresh Leaves of Pimenta racemosa (Mill.) J. W. Moore [J]. Natural Products and Bioprospecting, 2017, 7(4): 299-305. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
