Natural Products and Bioprospecting ›› 2023, Vol. 13 ›› Issue (6): 54-54.DOI: 10.1007/s13659-023-00421-z
• ORIGINAL ARTICLES • Previous Articles Next Articles
Xinxin Li1,2,3, Runlu Shi4, Lingchen Yan1, Weiwei Chu1,2, Ruishuang Sun5, Binkai Zheng1, Shuai Wang1,6, Hui Tan3, Xusheng Wang1, Ying Gao1,2,7
Received:
2023-10-24
Online:
2023-12-26
Published:
2023-12-24
Contact:
Hui Tan,E-mail:huitan@email.szu.edu.cn;Xusheng Wang,E-mail:wangxsh27@mail.sysu.edu.cn;Ying Gao,E-mail:gying1008@126.com
Supported by:
Xinxin Li1,2,3, Runlu Shi4, Lingchen Yan1, Weiwei Chu1,2, Ruishuang Sun5, Binkai Zheng1, Shuai Wang1,6, Hui Tan3, Xusheng Wang1, Ying Gao1,2,7
通讯作者:
Hui Tan,E-mail:huitan@email.szu.edu.cn;Xusheng Wang,E-mail:wangxsh27@mail.sysu.edu.cn;Ying Gao,E-mail:gying1008@126.com
基金资助:
Xinxin Li, Runlu Shi, Lingchen Yan, Weiwei Chu, Ruishuang Sun, Binkai Zheng, Shuai Wang, Hui Tan, Xusheng Wang, Ying Gao. Natural product rhynchophylline prevents stress-induced hair graying by preserving melanocyte stem cells via the β2 adrenergic pathway suppression[J]. Natural Products and Bioprospecting, 2023, 13(6): 54-54.
Xinxin Li, Runlu Shi, Lingchen Yan, Weiwei Chu, Ruishuang Sun, Binkai Zheng, Shuai Wang, Hui Tan, Xusheng Wang, Ying Gao. Natural product rhynchophylline prevents stress-induced hair graying by preserving melanocyte stem cells via the β2 adrenergic pathway suppression[J]. 应用天然产物, 2023, 13(6): 54-54.
[1] O’Sullivan JDB, Nicu C, Picard M, Chéret J, et al. The biology of human hair greying. Biol Rev Camb Philos Soc. 2021. https://doi.org/10.1111/brv.12648. [2] Tobin DJ. Age-related hair pigment loss. Curr Probl Dermatol. 2015. https://doi.org/10.1159/000369413. [3] Paus R. A neuroendocrinological perspective on human hair follicle pigmentation. Pigment Cell Melanoma Res. 2011. https://doi.org/10.1111/j.1755-148X. [4] Yale K, Juhasz M, Atanaskova MN. Medication-induced repigmentation of gray hair: a systematic review. Skin Appendage Disord. 2020. https://doi.org/10.1159/000504414. [5] Li RQ, Zhao XH, Zhu Q, Liu T, Hondermarck H, Thorne RF, et al. Exploring neurotransmitters and their receptors for breast cancer prevention and treatment. Theranostics. 2023. https://doi.org/10.7150/thno.81403. [6] Zhang B, Ma S, Rachmin I, He M, Baral P, Choi S, et al. Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells. Nature. 2020. https://doi.org/10.1038/s41586-020-1935-3. [7] Ma X, Hu Y, Batebi H, Heng J, et al. Analysis of β2AR-Gs and β2AR-Gi complex formation by NMR spectroscopy. Proc Natl Acad Sci U S A. 2020. https://doi.org/10.1073/pnas.2009786117. [8] Bai C, Wang J, Mondal D, Du Y, et al. Exploring the activation process of the β2AR-Gs complex. J Am Chem Soc. 2021. https://doi.org/10.1021/jacs.1c03696. [9] Ferrara N, Komici K, Corbi G, Pagano G, Furgi G, Rengo C, et al. β-adrenergic receptor responsiveness in aging heart and clinical implications. Front Physiol. 2014. https://doi.org/10.3389/fphys.2013.00396. [10] Kamiar A, Yousefi K, Dunkley JC, Webster KA, Shehadeh LA. β2-Adrenergic receptor agonism as a therapeutic strategy for kidney disease. Am J Physiol Regul Integr Comp Physiol. 2021. https://doi.org/10.1152/ajpregu.00287.2020. [11] Rambacher KM, Moniri NH. The β2-adrenergic receptor-ROS signaling axis: an overlooked component of β2AR function? Biochem Pharmacol. 2020. https://doi.org/10.1016/j.bcp.2019.113690. [12] Abosamak NR, Shahin MH. Beta 2 Receptor Agonists/Antagonists. StatPearls. Treasure Island (FL): StatPearls Publishing. 2023. [13] Léauté-Labrèze C, Hoeger P, Mazereeuw-Hautier J, Guibaud L, Baselga E, Posiunas G, et al. A randomized, controlled trial of oral propranolol in infantile hemangioma. N engl J Med. 2015. https://doi.org/10.1056/NEJMoa1404710. [14] Popp DA, Tse TF, Shah SD, Clutter WE, Cryer PE. Oral propranolol and metoprolol both impair glucose recovery from insulin-induced hypoglycemia in insulin-dependent diabetes mellitus. Diabetes Care. 1984. https://doi.org/10.2337/diacare.7.3.243. [15] Meng XY, Zhang HX, Mezei M, Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des. 2011. https://doi.org/10.2174/157340911795677602. [16] Khan S, Farooq U, Kurnikova M. Exploring protein stability by comparative molecular dynamics simulations of homologous hyperthermophilic, mesophilic, and psychrophilic proteins. J Chem Inf Model. 2016. https://doi.org/10.1021/acs.jcim.6b00305. [17] Liu K, Watanabe E, Kokubo H. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations. J Comput Aided Mol Des. 2017. https://doi.org/10.1007/s10822-016-0005-2. [18] Salmaso V, Moro S. Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: an overview. Front Pharmacol. 2018. https://doi.org/10.3389/fphar.2018.00923. [19] Zhang D, Lazim R. Application of conventional molecular dynamics simulation in evaluating the stability of apomyoglobin in urea solution. Sci Rep. 2017. https://doi.org/10.1038/srep44651. [20] Fage CD, Lathouwers T, Vanmeert M, Gao LJ, Vrancken K, Lammens EM, et al. The kalimantacin polyketide antibiotics inhibit fatty acid biosynthesis in staphylococcus aureus by targeting the enoyl-acyl carrier protein binding site of FabI. Angew Chem Int Ed Engl. 2020. https://doi.org/10.1002/anie.201915407. [21] Horiguchi T, Hayashi K, Tsubotani S, Iinuma S, Harada S, Tanida S. New naphthacenecarboxamide antibiotics, TAN-1518 A and B, have inhibitory activity against mammalian DNA topoisomerase I. J Antibiot (Tokyo). 1994. https://doi.org/10.7164/antibiotics.47.545. [22] Silvers MA, Pakhomova S, Neau DB, Silvers WC, Anzalone N, Taylor CM, et al. Crystal structure of carboxyltransferase from staphylococcus aureus bound to the antibacterial agent Moiramide B. Biochemistry. 2016. https://doi.org/10.1021/acs.biochem.6b00641. [23] Nakajima H, Hori Y, Terano H, Okuhara M, Manda T, Matsumoto S, et al. New antitumor substances, FR901463, FR901464 and FR901465. II. Activities against experimental tumors in mice and mechanism of action. J Antibiot (Tokyo). 1996. https://doi.org/10.7164/antibiotics.49.1204. [24] Cao W, Wang Y, Lv X, Yu X, Li X, Li H, et al. Rhynchophylline prevents cardiac dysfunction and improves survival in lipopolysaccharide-challenged mice via suppressing macrophage I-κBα phosphorylation. Int Immunopharmacol. 2012. https://doi.org/10.1016/j.intimp.2012.07.010. [25] Fu WY, Hung KW, Lau SF, Butt B, Yuen VW, Fu G, et al. Rhynchophylline administration ameliorates amyloid-β pathology and inflammation in an Alzheimer’s disease transgenic mouse model. ACS Chem Neurosci. 2021. https://doi.org/10.1021/acschemneuro.1c00600. [26] Yao C-L, Lin Y-M, Mohamed MS, Chen J-H. Inhibitory effect of ectoine on melanogenesis in B16-F0 and A2058 melanoma cell lines. Biochem Eng J. 2013. https://doi.org/10.1016/j.bej.2013.01.005. [27] Bartosova L, Bajgar J. Transdermal drug delivery in vitro using diffusion cells. Curr Med Chem. 2012. https://doi.org/10.2174/092986712803306358. [28] Wu JY, Li YJ, Liu TT, Ou G, Hu XB, Tang TT, et al. Microemulsions vs chitosan derivative-coated microemulsions for dermal delivery of 8-methoxypsoralen. Int J Nanomedicine. 2019. https://doi.org/10.2147/ijn.S191940. [29] Feske S, Wulff H, Skolnik EY. Ion channels in innate and adaptive immunity. Annu Rev Immunol. 2015. https://doi.org/10.1146/annurev-immunol-032414-112212. [30] Yu Y, Chang L, Hu Q, Zhu J, Zhang J, Xia Q, et al. P2rx1 deficiency alleviates acetaminophen-induced acute liver failure by regulating the STING signaling pathway. Cell Biol Toxicol. 2023. https://doi.org/10.1007/s10565-023-09800-1. [31] Zhou J, Zhou S. Antihypertensive and neuroprotective activities of rhynchophylline: the role of rhynchophylline in neurotransmission and ion channel activity. J Ethnopharmacol. 2010. https://doi.org/10.1016/j.jep.2010.08.041. [32] Ostojic J, Yoon YS, Sonntag T, Nguyen B, Vaughan JM, Shokhirev M, et al. Transcriptional co-activator regulates melanocyte differentiation and oncogenesis by integrating cAMP and MAPK/ERK pathways. Cell Rep. 2021. https://doi.org/10.1016/j.celrep.2021.109136. [33] Kim YM, Cho SE, Seo YK. The activation of melanogenesis by P-CREB and MITF signaling with extremely low-frequency electromagnetic fields on B16F10 melanoma. Life Sci. 2016. https://doi.org/10.1016/j.lfs.2016.08.015. [34] Arora N, Siddiqui EM, Mehan S. Involvement of adenylate cyclase/cAMP/CREB and SOX9/MITF in melanogenesis to prevent vitiligo. Mol Cell Biochem. 2021. https://doi.org/10.1007/s11010-020-04000-5. [35] Wang J, Gong J, Wang Q, Tang T, Li W. VDAC1 negatively regulates melanogenesis through the Ca2+-calcineurin-CRTC1-MITF pathway. Life Sci Alliance. 2022. https://doi.org/10.26508/lsa.202101350. [36] Motiani RK, Tanwar J, Raja DA, Vashisht A, Khanna S, et al. Stim1 activation of adenylyl cyclase 6 connects Ca2+ and camp signaling during melanogenesis. EMBO J. 2018. https://doi.org/10.15252/embj.201797597. [37] Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R. Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene. 2008. https://doi.org/10.1038/onc.2008.308. [38] Danese A, Leo S, Rimessi A, Wieckowski MR, Fiorica F, Giorgi C, et al. Cell death as a result of calcium signaling modulation: a cancer-centric prospective. Biochim Biophys Acta Mol Cell Res. 2021. https://doi.org/10.1016/j.bbamcr.2021.119061. [39] Macalino SJ, Gosu V, Hong S, Choi S. Role of computer-aided drug design in modern drug discovery. Arch Pharm Res. 2015. https://doi.org/10.1007/s12272-015-0640-5. [40] Heishima K, Sugito N, Soga T, Nishikawa M, Ito Y, Honda R, et al. Petasin potently inhibits mitochondrial complex I-based metabolism that supports tumor growth and metastasis. J Clin Invest. 2021. https://doi.org/10.1172/jci139933. [41] Zhong W, Myers JS, Wang F, Wang K, Lucas J, Rosfjord E, et al. Comparison of the molecular and cellular phenotypes of common mouse syngeneic models with human tumors. BMC Genomics. 2020. https://doi.org/10.1186/s12864-019-6344-3. [42] Joost S, Annusver K, Jacob T, Sun X, Dalessandri T, Sivan U, et al. The molecular anatomy of mouse skin during hair growth and rest. Cell Stem Cell. 2020. https://doi.org/10.1016/j.stem.2020.01.012. [43] Takahashi R, Grzenda A, Allison TF, Rawnsley J, Balin SJ, Sabri S, et al. Defining transcriptional signatures of human hair follicle cell states. J Invest Dermatol. 2020. https://doi.org/10.1016/j.jid.2019.07.726. [44] Liao Y, Smyth GK, Shi W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014. https://doi.org/10.1093/bioinformatics/btt656. [45] Chen Y, Lun AT, Smyth GK. From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline. F1000Res. 2016. https://doi.org/10.12688/f1000research.8987.2. [46] McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012. https://doi.org/10.1093/nar/gks042. [47] Robinson MD, McCarthy DJ, Smyth GK. EdgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010. https://doi.org/10.1093/bioinformatics/btp616. [48] Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. ClusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb). 2021. https://doi.org/10.1016/j.xinn.2021. [49] Yu G, Wang LG, Han Y, He QY. ClusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012. https://doi.org/10.1089/omi.2011.0118. |
[1] | Haoqi Dong, Xinni Yang, Peiying Wang, Weiya Huang, Liang Zhang, Song Song, Jiangxin Liu. Identification and verification of methylenetetrahydrofolate dehydrogenase 1-like protein as the binding target of natural product pseudolaric acid A [J]. Natural Products and Bioprospecting, 2025, 15(3): 21-21. |
[2] | Hesham R. El-Seedi, Mohamed S. Refaey, Nizar Elias, Mohamed F. El-Mallah, Faisal M. K. Albaqami, Ismail Dergaa, Ming Du, Mohamed F. Salem, Haroon Elrasheid Tahir, Maria Dagliaa, Nermeen Yosri, Hongcheng Zhang, Awg H. El-Seedi, Zhiming Guo, Shaden A. M. Khalifa. Marine natural products as a source of novel anticancer drugs: an updated review (2019-2023) [J]. Natural Products and Bioprospecting, 2025, 15(2): 13-13. |
[3] | Xiaoxia Gu, Xiaotian Zhang, Xueke Zhang, Xinyu Wang, Weiguang Sun, Yonghui Zhang, Zhengxi Hu. Unveiling the mechanism of action of a novel natural dual inhibitor of SARS-CoV-2 Mpro and PLpro with molecular dynamics simulations [J]. Natural Products and Bioprospecting, 2025, 15(1): 3-3. |
[4] | María I. Osella, Mario O. Salazar, Carlos M. Solís, Ricardo L. E. Furlan. New semisynthetic α-glucosidase inhibitor from a doubly-chemically engineered extract [J]. Natural Products and Bioprospecting, 2025, 15(1): 4-4. |
[5] | Ahmed H. Elbanna, Xinhui Kou, Dilip V. Prajapati, Surasree Rakshit, Rebecca A. Butcher. Discovery of a parallel family of euglenatide analogs in Euglena gracilis [J]. Natural Products and Bioprospecting, 2025, 15(1): 10-10. |
[6] | Song-Yu Hou, Bing-Chao Yan, Han-Dong Sun, Pema-Tenzin Puno. Recent advances in the application of [2+2] cycloaddition in the chemical synthesis of cyclobutane-containing natural products [J]. Natural Products and Bioprospecting, 2024, 14(5): 37-37. |
[7] | Guangyu Zhu, Dian Luo, Yueqin Zhao, Zhengrui Xiang, Chao Chen, Na Li, Xiaojiang Hao, Xiao Ding, Yingjun Zhang, Yuhan Zhao. Pacidusin B isolated from Phyllanthus acidus triggers ferroptotic cell death in HT1080 cells [J]. Natural Products and Bioprospecting, 2024, 14(5): 34-34. |
[8] | Felaine Anne Sumang, Alan Ward, Jeff Errington, Yousef Dashti. Hibiscus acid and hydroxycitric acid dimethyl esters from Hibiscus flowers induce production of dithiolopyrrolone antibiotics by Streptomyces Strain MBN2-2 [J]. Natural Products and Bioprospecting, 2024, 14(5): 40-40. |
[9] | Hai-Hui Guo, Lei Wu, Dan Mi, Xing-Yu Zhang, Fu-Mei He, Ting Lei, Fu-Sheng Wang. Polysaccharide fraction from Triplostegia glandulifera Wall and its renoprotective effect in streptozotocin-induced diabetic mice by attenuating oxidative stress [J]. Natural Products and Bioprospecting, 2024, 14(5): 47-47. |
[10] | Gleb V. Borkunov, Elena V. Leshchenko, Dmitrii V. Berdyshev, Roman S. Popov, Ekaterina A. Chingizova, Nadezhda P. Shlyk, Andrey V. Gerasimenko, Natalya N. Kirichuk, Yuliya V. Khudyakova, Viktoria E. Chausova, Alexandr S. Antonov, Anatoly I. Kalinovsky, Artur R. Chingizov, Ekaterina A. Yurchenko, Marina P. Isaeva, Anton N. Yurchenko. New piperazine derivatives helvamides B-C from the marine-derived fungus Penicillium velutinum ZK-14 uncovered by OSMAC (One Strain Many Compounds) strategy [J]. Natural Products and Bioprospecting, 2024, 14(4): 32-32. |
[11] | Chunsong Hu. Marine natural products and human immunity: novel biomedical resources for anti-infection of SARS-CoV-2 and related cardiovascular disease [J]. Natural Products and Bioprospecting, 2024, 14(2): 2-2. |
[12] | Shohreh Ariaeenejad, Javad Gharechahi, Mehdi Foroozandeh Shahraki, Fereshteh Fallah Atanaki, Jian-Lin Han, Xue-Zhi Ding, Falk Hildebrand, Mohammad Bahram, Kaveh Kavousi, Ghasem Hosseini Salekdeh. Precision enzyme discovery through targeted mining of metagenomic data [J]. Natural Products and Bioprospecting, 2024, 14(1): 7-7. |
[13] | Daniel W. Armstrong, Alain Berthod. Occurrence of D-amino acids in natural products [J]. Natural Products and Bioprospecting, 2023, 13(6): 47-47. |
[14] | Lingli Ding, Zhao Gao, Siluo Wu, Chen Chen, Yamei Liu, Min Wang, Yage Zhang, Ling Li, Hong Zou, Guoping Zhao, Shengnan Qin, Liangliang Xu. Ginsenoside compound-K attenuates OVX-induced osteoporosis via the suppression of RANKL-induced osteoclastogenesis and oxidative stress [J]. Natural Products and Bioprospecting, 2023, 13(6): 49-49. |
[15] | Dalila Carbone, Carmela Gallo, Genoveffa Nuzzo, Giusi Barra, Mario Dell'Isola, Mario Affuso, Olimpia Follero, Federica Albiani, Clementina Sansone, Emiliano Manzo, Giuliana d'Ippolito, Angelo Fontana. Marine natural product lepadin A as a novel inducer of immunogenic cell death via CD91-dependent pathway [J]. Natural Products and Bioprospecting, 2023, 13(5): 34-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||