1 Wink M. Biochemistry of plant secondary metabolism. 2nd ed. Oxford, UK:Wiley-Blackwell; 2010. 2 Forero E, Romero C. Studies of legumes in Colombia. J Colomb Acad Exact, Phys Nat Sci. 2005;25:12-5. 3 Wink M. Evolution of secondary metabolites in legumes (Fabaceae). S Afr J Bot. 2013;89:164-75. 4 Dung DT, Hang DTT, Yen PH, Quang TH, Nhiem NX, Tai BH, et al. Macrocyclic bis-quinolizidine alkaloids from Xestospongia muta. Nat Prod Res. 2019;33:400-6. 5 Daly JW, Garraffo HM, Spande TF, Yeh HJC, Peltzer PM, Cacivio PM, et al. Indolizidine 239Q and quinolizidine 275I. Major alkaloids in two Argentinian bufonid toads (Melanophryniscus). Toxicon. 2008;52:858-70. 6 Fitch RW, Garraffo HM, Spande TF, Yeh HJC, Daly JW. Bioassay-guided isolation of epiquinamide, a novel quinolizidine alkaloid and nicotinic agonist from an Ecuadoran poison frog, Epipedobates tricolor. J Nat Prod. 2003;66:1345-50. 7 Jain P, Garraffo HM, Yeh HJC, Spande TF, Daly JW, Andriamaharavo NR, et al. A 1,4-disubstituted quinolizidine from a Madagascan mantelline frog (Mantella). J Nat Prod. 1996;59:1174-8. 8 Lourenço AM, Máximo P, Ferreira LM, Pereira MMA. Indolizidine and quinolizidine alkaloids structure and bioactivity. In:Atta-ur-Rahman, editor. Studies in natural products chemistry. Amsterdam:Elsevier; 2002, pp 233-98. 9 Ruiz López M, García López P, Rodríguez Macías R, Zamora Natera J, Isaac Virgen M, Múzquiz M. Mexican wild lupines as a source of quinolizidine alkaloids of economic potential. Polibotánica. 2010;29:159-64. 10 Bernal-Alcocer A, Zamora-Natera JF, Virgen-calleros G, Nuño-romero R. In vitro biological activity of Lupinus spp. on phytopathogenic fungi. Rev Mex Fitopatol. 2005;23:140-6. 11 Zamora-Natera F, García-López P, Ruiz-López M, Salcedo-Pérez E. Alkaloid composition in seeds of Lupinus mexicanus (Fabaceae) and antifungal and allelopathic evaluation of the alkaloid extract. Agrociencia. 2008;42:185-92. 12 Wink M. Chemical defense of lupins. Mollusc-repellent properties of quinolizidine alkaloids. Zeitschrift für Naturforsch C. 1984;39:553-8. 13 Wink M. Plant secondary metabolites modulate insect behavior-steps toward addiction? Front Physiol. 2018;9 APR:1-9. 14 Romeo F, Fabroni S, Ballistreri G, Muccilli S, Spina A, Rapisarda P. Characterization and antimicrobial activity of alkaloid extracts from seeds of different genotypes of Lupinus spp. Sustainability. 2018;10:788. 15 Ploetz RC. Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f. sp. cubense. Phytopathology. 2006;96:653-6. 16 Ma L-J, Geiser DM, Proctor RH, Rooney AP, O'Donnell K, Trail F, et al. Fusarium pathogenomics. Annu Rev Microbiol. 2013;67:399-416. 17 Gordon TR. Fusarium oxysporum and the Fusarium Wilt Syndrome. Annu Rev Phytopathol. 2017;55:23-39. 18 Zubrod JP, Bundschuh M, Arts G, Brühl CA, Imfeld G, Knäbel A, et al. Fungicides:an overlooked pesticide class? Environ Sci Technol. 2019;53:3347-65. 19 Zhao B, He D, Wang L. Advances in Fusarium drug resistance research. J Glob Antimicrob Resist. 2021;24:215-9. 20 Przybył AK, Kubicki M. Simple and highly efficient preparation and characterization of (-)-lupanine and (+)-sparteine. Tetrahedron. 2011;67:7787-93. 21 Cho YD, Martin RO. 5,6-dehydrolupanine, a new alkaloid, and lupanine from Thermopsis rhombifolia (Nutt) Richards. Can J Chem. 1971;49:265-70. 22 Al-Azizi MM, Al-Said MS, El-Olemy MM, Sattar EA, Khalifa AS. Rhombifoline and 5,6-dehydrolupanine from Anagyrus foetida L. Arch Pharm Res. 1994;17:393-7. 23 Borowiak T, Wolska I, Wysocka W, Brukwicki T. On the structure and spectroscopic properties of two 13-hydroxylupanine epimers. J Mol Struct. 2005;753:27-34. 24 Gołȩlebiewski WM. Application of two-dimensional NMR spectroscopy to the analysis of the proton NMR spectrum of sparteine and its lactams. Magn Reson Chem. 1986;24:105-12. 25 Golebiewskl WM, Spenser ID. Lactams of sparteine. Can J Chem. 1985;63:716-9. 26 Kolanoś R, Wysocka W, Brukwicki T. A comparative study of NMR chemical shifts of sparteine thiolactams and lactams. Tetrahedron. 2003;59:5531-7. 27 Brukwicki T, Wysocka W, Nowak-Wydra B. Lupin alkaloids 6. Stereochemistry of bis-quinolizidine alkaloids with γ-oxo-α, β-enamine system. Can J Chem. 1994;72:193-9. 28 Borowiak T, Kubicki M, Wysocka W, Przybył A. Regio-selective bromination of multiflorine and structures of 3-bromomultiflorine and its molecular complex with succinimide. J Mol Struct. 1998;442:103-13. 29 Rycroft DS, Robins DJ, Sadler IH. Revised assignment of the 1H NMR spectrum of the quinolizidine alkaloid lupinine. Magn Reson Chem. 1992;30:S15-7. 30 Gueyrard D, Tlegenov RT, Steinbruckner S, Perly B, Rollin P. Synthesis of new derivatives of 11-thiolupinine. J Sulfur Chem. 2010;31:493-8. 31 Sagen A-L, Gertsch J, Becker R, Heilmann J, Sticher O. Quinolizidine alkaloids from the curare adjuvant Clathrotropis glaucophylla. Phytochemistry. 2002;61:975-8. 32 Przybył AK, Kubicki M. A comparative study of dynamic NMR spectroscopy in analysis of selected N-alkyl-, N-acyl-, and halogenated cytisine derivatives. J Mol Struct. 2011;985:157-66. 33 Turdybekov KM, Kulakov IV, Turdybekov DM, Mahmutova AS. Conformational states and crystal structure of N-formylcytisine. Russ J Gen Chem. 2017;87:2493-6. 34 Rycroft DS, Robins DJ, Sadler IH. Assignment of the 1H and 13C NMR spectra of the quinolizidine alkaloid anagyrine and determination of its conformation. Magn Reson Chem. 1991;29:936-40. 35 Brukwicki T, Przybyl A, Wysocka W, Sośnicki J. The first quantitative determination of conformational equilibrium in quinolizidine-piperidine alkaloids. Tetrahedron. 1999;55:14501-12. 36 Wysocka W, Przybył A, Brukwicki T. The structure of angustifoline, an alkaloid of Lupinus angustifolius, in solution. Monatsh Chem. 1994;125:1267-72. 37 Wang R, Deng X, Gao Q, Wu X, Han L, Gao X, et al. Sophora alopecuroides L.:an ethnopharmacological, phytochemical, and pharmacological review. J Ethnopharmacol. 2020;248 November 2018:112172. 38 Bai GY, Wang DQ, Ye CH, Liu ML. 1H and 13C chemical shift assignments and stereochemistry of matrine and oxymatrine. Appl Magn Reson. 2002;23:113-21. 39 Azimova SS, Yunusov MS. Natural compounds:alkaloids. New York, NY:Springer; 2013. 40 Lewis JS, Graybill JR. Fungicidal versus Fungistatic:what's in a word? Expert Opin Pharmacother. 2008;9:927-35. 41 Graybill JR, Burgess DS, Hardin TC. Key issues concerning fungistatic versus fungicidal drugs. Eur J Clin Microbiol Infect Dis. 1997;16:42-50. 42 Zamora-Natera JF, Bernal-Alcocer A, Ruiz-López M, Soto-Hernández M, Escalante-Estrada A. Vibrans-Lindemann H. Seed alkaloid profile of Lupinus exaltatus Zucc. (Fabaceae) and the antifungal evaluation of the alkaloid extract and lupanine against phytopathogens. Rev Mex Fitopatol. 2005;23:124-9. 43 Erdemoglu N, Ozkan S, Duran A, Tosun F. GC-MS analysis and antimicrobial activity of alkaloid extract from Genista vuralii. Pharm Biol. 2009;47:81-5. 44 Kwaśniewska PW, Cofta G, Mazela B, Gobakken LR, Przybył AK. Fungistatic activity of quinolizidine and bisquinolizidine alkaloids against A. niger. In:IRG, editor. Proceedings IRG Annual Meeting:The 47th IRG Annual Meeting. Stockholm Sweden:The International Research Group on Wood Protection (IRG/WP); 2016. p. 1-9. 45 El Hamdani N, Filali-Ansari N, Fdil R, El Abbouyi A, El Khyari S. Antifungal activity of the alkaloids extracts from aerial parts of Retama monosperma. Res J Pharm Biol Chem Sci. 2016;7:965-71. 46 Bernal FA, Coy-Barrera E. Composition and antifungal activity of the alkaloidal fraction of Lupinus mirabilis L.:a biochemometrics-based exploration. Molecules. 2022;27:2832. 47 Wink M. Chemical defense of leguminosae are quinolizidine alkaloids part of the antimicrobial defense system of lupins? Zeitschrift fur Naturforsch C. 1984;39:548-52. 48 Küçükboyacı N, Özkan S, Tosun F. Gas chromatographic determination of quinolizidine alkaloids in Genista sandrasica and their antimicrobial activity. Rec Nat Prod. 2012;6:71-4. 49 Pérez-Laínez D, García-Mateos R, San Miguel-Chávez R, Soto-Hernández M, Rodríguez-Pérez E, Kite G. Bactericidal and fungicidal activities of Calia secundiflora (Ort.) Yakovlev. Zeitschrift fur Naturforsch C. 2008;63:653-7. 50 Hammouche-Mokrane N, León-González AJ, Navarro I, Boulila F, Benallaoua S, Martín-Cordero C. Phytochemical profile and antibacterial activity of Retama raetam and R. sphaerocarpa cladodes from Algeria. Nat Prod Commun. 2017;12:1857-60. 51 Erdemoglu N, Ozkan S, Tosun F. Alkaloid profile and antimicrobial activity of Lupinus angustifolius L. alkaloid extract. Phytochem Rev. 2007;6:197-201. 52 Yang X, Zhao B. Antifungal activities of matrine and oxymatrine and their synergetic effects with chlorthalonil. J For Res. 2006;17:323-5. 53 Wu L, Zhou ZT, Zhou YM, Wang HY, Shi LJ. In vitro activity of matrine against Candida albicans biofilms. Shanghai J Stomatol. 2009;18:415-8. 54 Matsuda A, Hachiya N, Kawamura Y. Studies on antifungal activity of variotin. J Antibiot (Tokyo). 1959;12:203-9. 55 Cely-Veloza W, Quiroga D, Coy-Barrera E. Quinolizidine-based variations and antifungal activity of eight Lupinus species grown under greenhouse conditions. Molecules. 2022;27:305. 56 Babushok VI. Chromatographic retention indices in identification of chemical compounds. Trends Anal Chem. 2015;69:98-104. 57 Cárdenas-Laverde D, Barbosa-Cornelio R, Coy-Barrera E. Antifungal activity against Fusarium oxysporum of botanical end-products:an integration of chemical composition and antifungal activity datasets to identify antifungal bioactives. Plants. 2021;10:2563. 58 Marentes-Culma R, Orduz-Díaz LL, Coy-Barrera E. Targeted metabolite profiling-based identification of antifungal 5-n-alkylresorcinols occurring in different cereals against Fusarium oxysporum. Molecules. 2019;24:770. 59 Cole MD. Key antifungal, antibacterial and anti-insect assays-a critical review. Biochem Syst Ecol. 1994;22:837-56. 60 Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW. InfoStat. http://www.infostat.com.ar/(accessed on 12 January 2023). versión 24. Córdoba, Argentina:Universidad Nacional de Córdoba; 2011. |