[1] Reilly C. Selenium in food and health. New York, NY: Springer; 1996. [2] Minich WB. Selenium metabolism and biosynthesis of selenoproteins in the human body. Biochem Biokhimiia. 2022;87(Suppl 1):S168-S177. https://doi.org/10.1134/S0006297922140139. [3] Dhillon KS, Dhillon SK. Distribution and management of seleniferous soils. Adv Agron. 2003;79:119-84. https://doi.org/10.1016/s0065-2113(02)79003-2. [4] Fordyce F. Selenium geochemistry and health. Ambio. 2007;1:94-7. https://doi.org/10.1579/0044-7447. [5] Genchi G, Lauria G, Catalano A, Sinicropi MS, Carocci A. Biological activity of selenium and its impact on human health. Int J Mol Sci. 2023;24(3):2633-62. https://doi.org/10.3390/ijms24032633. [6] Schomburg L, Arnér ES. Selenium metabolism in herbivores and higher trophic levels including mammals. Selenium Plants. 2017;11:123-139. https://doi.org/10.1007/978-3-319-56249-0_8. [7] Zhou B, Cao H, Wu Q, Mao K, Yang X, Su J, Zhang H. Agronomic and genetic strategies to enhance selenium accumulation in crops and their influence on quality. Foods. 2023;24:4442. https://doi.org/10.3390/foods12244442. [8] Trippe RC, Pilon-Smits EA. Selenium transport and metabolism in plants: phytoremediation and biofortification implications. J Hazard Mater. 2021;404(Part B):124178. https://doi.org/10.1016/j.jhazmat.2020.124178. [9] Harvey M-A, Erskine PD, Harris HH, Virtue JI, van der Ent A. Plant-soil relations of selenium, molybdenum and vanadium in the Richmond district of Central Queensland, Australia. Plant Soil. 2024;504:435-455. https://doi.org/10.1007/s11104-024-06633-7. [10] McCarthy PM, editor. Flora of Australia-Volume 12 - Mimosaceae (excl. Acacia), Caesalpiniaceae. Canberra: Australian Government Publ Service; 1988. [11] Harvey M-A, Erskine PD, Harris HH, Brown GK, Pilon-Smits EA, Casey LW, Echevarria G, van der Ent A. Distribution and chemical form of selenium in Neptunia amplexicaulis from Central Queensland, Australia. Metallomics. 2020;4:514-27. https://doi.org/10.1039/c9mt00244h. [12] Terry N, Zayed AM, de Souza MP, Tarun AS. Selenium in higher plants. Ann Rev Plant Physiol Plant Mol Biol. 2000;51:401-432. https://doi.org/10.1146/annurev.arplant.51.1.401. [13] White PJ. Selenium accumulation by plants. Ann Bot. 2016;2:217-35. https://doi.org/10.1093/aob/mcv180. [14] Wang J, Cappa JJ, Harris JP, Edger PP, Zhou W, Pires JC, Adair M, Unruh SA, Simmons MP, Schiavon M, Pilon-Smits EA. Transcriptome-wide comparison of selenium hyperaccumulator and nonaccumulator Stanleya species provides new insight into key processes mediating the hyperaccumulation syndrome. Plant Biotechnol J. 2018;9:1582-94. https://doi.org/10.1111/pbi.12897. [15] Toler HD, Charron CS, Sams CE, Randle WR. Selenium increases sulfur uptake and regulates glucosinolate metabolism in rapid-cycling Brassica oleracea. Amer Soc Hort Sci. 2007;1:14-9. https://doi.org/10.21273/JASHS.132.1.14. [16] White PJ, Bowen HC, Parmaguru P, Fritz M, Spracklen WP, Spiby RE, Meacham MC, Mead A, Harriman M, Trueman LJ, Smith BM, Thomas B, Broadley MR. Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J Exp Bot. 2004;404:1927-37. https://doi.org/10.1093/jxb/erh192. [17] Anami S, Njuguna E, Coussens G, Aesaert S, van Lijsebettens M. Higher plant transformation: principles and molecular tools. Int J Dev Biol. 2013;6:483-94. https://doi.org/10.1387/ijdb.130232mv. [18] Zhang D, Zhang Z, Unver T, Zhang B. CRISPR/Cas: a powerful tool for gene function study and crop improvement. J Adv Res. 2021;29:207-221. https://doi.org/10.1016/j.jare.2020.10.003. [19] Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, Citovsky V, Conrad LJ, Gelvin SB, Jackson DP, Kausch AP, Lemaux PG, Medford JI, Orozco-Cárdenas ML, Tricoli DM, van Eck J, Voytas DF, Walbot V, Wang K, Zhang ZJ, Stewart CN. Advancing crop transformation in the era of genome editing. Plant Cell. 2016;7:1510-20. https://doi.org/10.1105/tpc.16.00196. [20] Hwang H-H, Yu M, Lai E-M. Agrobacterium-mediated plant transformation: biology and applications. Arbo J. 2017;15:e0186. https://doi.org/10.1199/tab.0186. [21] Maher MF, Nasti RA, Vollbrecht M, Starker CG, Clark MD, Voytas DF. Plant gene editing through de novo induction of meristems. Nat Biotechnol. 2020;1:84-9. https://doi.org/10.1038/s41587-019-0337-2. [22] Ikeuchi M, Ogawa Y, Iwase A, Sugimoto K. Plant regeneration: cellular origins and molecular mechanisms. Development. 2016;9:1442-51. https://doi.org/10.1242/dev.134668. [23] Thambiraj J, Paulsamy S. Rapid in vitro multiplication of the ethnomedicinal shrub, Acacia caesia (L.) Willd. (Mimosaceae) from leaf explants. Asian Pac J Trop Biomed. 2012;2:S618-22. https://doi.org/10.1016/S2221-1691(12)60284-6. [24] Raghavendar G, Khannam A, Rathore T, An efficient protocol for in vitro propagation of Mimosa pudica L. - A medicinally important plant species. International Journal on Agricultural Science 2019;10(1&2):29-33 [25] O’Donohue B, Hiti-Bandaralage J, Gleeson M, O’Brien C, Harvey M-A, van der Ent A, Pinto Irish K, Mitter N, Hayward A. Tissue culture tools for selenium hyperaccumulator Neptunia amplexicaulis for development in phytoextraction. Nat Prod Bioprospect. 2022;12:28. https://doi.org/10.1007/s13659-022-00351-2. [26] Mano H, Fujii T, Sumikawa N, Hiwatashi Y, Hasebe M. Development of an Agrobacterium-mediated stable transformation method for the sensitive plant Mimosa pudica. PLoS ONE. 2014;2:e88611. https://doi.org/10.1371/journal.pone.0088611. [27] Ikakkar M, Mohan Ram HY. Regeneration of whole plants from tissue cultures of the tropical aquatic legume, Neptunia oleracea. J Plant Physiol. 1986;1:83-91. https://doi.org/10.1016/S0176-1617(86)80220-6. [28] Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;3:473-97. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x. [29] Liu H, Zhao H, Wu L, Xu W. A genetic transformation method for cadmium hyperaccumulator Sedum plumbizincicola and non-hyperaccumulating ecotype of Sedum alfredii. Front Plant Sci. 2017;8. https://doi.org/10.3389/fpls.2017.01047. [30] Ahmadi H, Corso M, Weber M, Verbruggen N, Clemens S. CAX1 suppresses Cd-induced generation of reactive oxygen species in Arabidopsis halleri. Plant, Cell Environ. 2018;10:2435-48. https://doi.org/10.1111/pce.13362. [31] Wang Y, Salt DE, Koornneef M, Aarts MG. Construction and analysis of a Noccaea caerulescens TILLING population. BMC Plant Biol. 2022;22(360). https://doi.org/10.1186/s12870-022-03739-x. [32] Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;7:671-5. https://doi.org/10.1038/nmeth.2089. [33] R Core Team, R: A languaage and environment for statistical computing. 2020, https://www.R-project.org/ [34] Wickham H, Chang W, Henry L, Pedersen TL, Takahashi K, Wilke C, Woo K, Yutani H, Dunnington D, van den Brand T, CRAN: Contributed Packages. 2007 https://doi.org/10.32614/CRAN.package.ggplot2 [35] Wickham H, François R, Henry L, Müller K, Vaughan D, CRAN: Contributed Packages. 2014 https://doi.org/10.32614/CRAN.package.dplyr [36] Gamborg OL, Miller RA, Ojima K. Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res. 1968;1(1):151-8. https://doi.org/10.1016/0014-4827(68)90403-5. [37] Gulati A, Jaiwal PK. Culture conditions effecting plant regeneration from cotyledons of Vigna radiata (L.) Wilczek. Plant Cell Tissue Organ Cult. 1990;23:1-7. https://doi.org/10.1007/BF00116082. [38] Zhang X, Xu G, Cheng C, Lei L, Sun J, Xu Y, Deng C, Dai Z, Yang Z, Chen X, Liu C, Tang Q, Su J. Establishment of an Agrobacterium-mediated genetic transformation and CRISPR/Cas9-mediated targeted mutagenesis in Hemp (Cannabis sativa L.). Plant Biotechnol J. 2021;10:1979-87. https://doi.org/10.1111/pbi.13611. [39] Gentile A, Monticelli S, Damiano C. Adventitious shoot regeneration in peach [Prunus persica (L.) Batsch]. Plant Cell Rep. 2002;11:1011-6. https://doi.org/10.1007/s00299-002-0451-2. [40] Assou J, Bethge H, Wamhoff D, Winkelmann T. Effect of cytokinins and light quality on adventitious shoot regeneration from leaflet explants of peanut (Arachis hypogaea ). J Hortic Sci Biotechnol. 2023. https://doi.org/10.1080/14620316.2022.2160382. [41] Duran-Vila N, Gogorcena Y, Ortega V, Ortiz J, Navarro L. Morphogenesis and tissue culture of sweet orange (Citrus sinensis (L.) Osb.): effect of temperature and photosynthetic radiation. Plant Cell Tissue Organ Cult. 1992;1(1):11-8. https://doi.org/10.1007/BF00036140. [42] Polivanova OB, Bedarev VA. Hyperhydricity in plant tissue culture. Plants. 2022;11(23): 3313. https://doi.org/10.3390/plants11233313. [43] Permadi N, Akbari SI, Prismantoro D, Indriyani NN, Nurzaman M, Alhasnawi AN, Doni F, Julaeha E. Traditional and next-generation methods for browning control in plant tissue culture: current insights and future directions. Curr Plant Biol. 2024;38:100339. https://doi.org/10.1016/j.cpb.2024.100339. [44] Chugh S, Guha S, Rao IU. Micropropagation of orchids: a review on the potential of different explants. Sci Hortic. 2009;122(4):507-520. https://doi.org/10.1016/j.scienta.2009.07.016. [45] He Y, Guo X, Lu R, Niu B, Pasapula V, Hou P, Cai F, Xu Y, Chen F. Changes in morphology and biochemical indices in browning callus derived from Jatropha curcas hypocotyls. Plant Cell Tissue Organ Cult. 2009;1(1):11-7. https://doi.org/10.1007/s11240-009-9533-y. [46] Gislerød HR, Selliah R, Ayeh KO, Hvoslef-Eide AK. Macro- and micronutrient nutrition of plants in greenhouses, hydroponic systems, and in vitro culture on gelled media. In: Voslef-Eide AK, Preil W, editors. Liquid culture systems for in vitro plant propagation. Netherlands: Springer; 2005. https://doi.org/10.1007/1-4020-3200-5_36. [47] Nkrumah PN, Erskine PD, Erskine JD, van der Ent A. Rare earth elements (REE) in soils and plants of a uranium-REE mine site and exploration target in Central Queensland, Australia. Plant Soil. 2021;1-2:375-89. https://doi.org/10.1007/s11104-021-04956-3. [48] Pai SR, Desai NS. In: Ahmad N, Faisal M, editors. Thidiazuron: from urea derivative to plant growth regulator. Singapore: Springer Singapore; 2018. p. 439. [49] Perveen S, Anis M. Physiological and biochemical parameters influencing ex vitro establishment of the in vitro regenerants of Albizia lebbeck (L.) Benth.: an important soil reclaiming plantation tree. Agroforest Syst. 2015;89:721-733. https://doi.org/10.1007/s10457-015-9809-7. [50] Ivanova M, van Staden J. Influence of gelling agent and cytokinins on the control of hyperhydricity in Aloe polyphylla. Plant Cell Tissue Organ Cult. 2011;104:13-21. https://doi.org/10.1007/s11240-010-9794-5. [51] Sivanesan I, Song JY, Hwang SJ, Jeong BR. Micropropagation of Cotoneaster wilsonii Nakai—a rare endemic ornamental plant. Plant Cell Tissue Organ Cult. 2011;105:55-63. https://doi.org/10.1007/s11240-010-9841-2. [52] Dewir YH, Nurmansyah Naidoo Y, Da Teixeira Silva JA. Thidiazuron-induced abnormalities in plant tissue cultures. Plant Cell Rep. 2018;11:1451-70. https://doi.org/10.1007/s00299-018-2326-1. [53] Ramakrishna D, Shasthree T. High efficient somatic embryogenesis development from leaf cultures of Citrullus colocynthis (L.) Schrad for generating true type clones. Physiol Mol Biol Plants. 2016;2:279-85. https://doi.org/10.1007/s12298-016-0357-z. [54] Bairu MW, Aremu AO, van Staden J. Somaclonal variation in plants: causes and detection methods. Plant Growth Regul. 2011;63:147-173. https://doi.org/10.1007/s10725-010-9554-x. [55] Nivya VM, Shah JM. Recalcitrance to transformation, a hindrance for genome editing of legumes. Front Genome Edit. 2023;5. https://doi.org/10.3389/fgeed.2023.1247815. [56] Jameson PE. Zeatin: the 60th anniversary of its identification. Plant Physiol. 2023;192(1):34-55. https://doi.org/10.1093/plphys/kiad094. [57] Allahham A, Kanno S, Zhang L, Maruyama-Nakashita A. Sulfur deficiency increases phosphate accumulation, uptake, and transport in Arabidopsis thaliana. Int J Mol Sci. 2020;8:2971-86. https://doi.org/10.3390/ijms21082971. [58] Nikiforova V, Freitag J, Kempa S, Adamik M, Hesse H, Hoefgen R. Transcriptome analysis of sulfur depletion in Arabidopsis thaliana: interlacing of biosynthetic pathways provides response specificity. Plant J. 2003;4:633-50. https://doi.org/10.1046/j.1365-313X.2003.01657.x. [59] van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H. Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil. 2013;1-2:319-34. https://doi.org/10.1007/s11104-012-1287-3. [60] Pinto Irish K, Harvey M-A, Erskine PD, van der Ent A. Root foraging and selenium uptake in the Australian hyperaccumulator Neptunia amplexicaulis and non-accumulator Neptunia gracilis. Plant Soil. 2021;462:219-233. https://doi.org/10.1007/s11104-021-04843-x. [61] Lima LW, Pilon-Smits EA, Schiavon M. Mechanisms of selenium hyperaccumulation in plants: a survey of molecular, biochemical and ecological cues. Biochim Biophys Acta Gen Subj. 2018;1862(11):2343-2353. https://doi.org/10.1016/j.bbagen.2018.03.028. [62] Gupta M, Gupta S. An overview of selenium uptake, metabolism, and toxicity in plants. Front Plant Sci. 2016;7. https://doi.org/10.3389/fpls.2016.02074. [63] Schiavon M, Pilon-Smits EA. The fascinating facets of plant selenium accumulation—biochemistry, physiology, evolution and ecology. New Phytol. 2017;4:1582-96. https://doi.org/10.1111/nph.14378. [64] van der Ent A, Salinitro M, Brueckner D, Spiers KM, Montanari S, Tassoni A, Schiavon M. Differences and similarities in selenium biopathways in Astragalus, Neptunia (Fabaceae) and Stanleya (Brassicaceae) hyperaccumulators. Ann Bot. 2023;132(2):349-61. https://doi.org/10.1093/aob/mcad110. [65] Pinto Irish K, Harvey M-A, Harris HH, Aarts MGM, Chan CX, Erskine PD, van der Ent A. Micro-analytical and molecular approaches for understanding the distribution, biochemistry, and molecular biology of selenium in (hyperaccumulator) plants. Planta. 2022;257(2). https://doi.org/10.1007/s00425-022-04017-8. |