[1] Fu R, Li J, Yu H, Zhang Y, Xu Z, Martin C. The Yin and Yang of traditional Chinese and Western medicine. Med Res Rev. 2021;41(6):3182-200. [2] Zhang L, Zheng X, Bai X, Wang Q, Chen B, Wang H, et al. Association between use of Qingfei Paidu Tang and mortality in hospitalized patients with COVID-19: a national retrospective registry study. Phytomedicine. 2021;85: 153531. [3] Shi N, Liu B, Liang N, Ma Y, Ge Y, Yi H, et al. Association between early treatment with Qingfei Paidu decoction and favorable clinical outcomes in patients with COVID-19: a retrospective multicenter cohort study. Pharmacol Res. 2020;161: 105290. [4] Xing D, Liu Z. Effectiveness and safety of traditional Chinese medicine in treating COVID-19: clinical evidence from China. Aging Dis. 2021;12(8):1850. [5] Zhao J, Tian S, Lu D, Yang J, Zeng H, Zhang F, et al. Systems pharmacological study illustrates the immune regulation, anti-infection, anti-inflammation, and multi-organ protection mechanism of Qing-Fei-Pai-Du decoction in the treatment of COVID-19. Phytomedicine. 2021;85: 153315. [6] Drake TM, Riad AM, Fairfield CJ, Egan C, Knight SR, Pius R, et al. Characterisation of in-hospital complications associated with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol UK: a prospective, multicentre cohort study. Lancet. 2021;398(10296):223-37. [7] Zheng Q, Mu X, Pan S, Luan R, Zhao P. Ephedrae herba: a comprehensive review of its traditional uses, phytochemistry, pharmacology, and toxicology. J Ethnopharmacol. 2023;307:116153. [8] Andrade‐Cetto A, García‐Alvarez J. Respiratory Conditions, Ethnopharmacology 2015:147-158. [9] Ji M-Y, Bo A, Yang M, Xu J-F, Jiang L-L, Zhou B-C, et al. The pharmacological effects and health benefits of Platycodon grandiflorus—a medicine food homology species. Foods. 2020;9(2):142. [10] Zhang L-L, Huang M-Y, Yang Y, Huang M-Q, Shi J-J, Zou L, et al. Bioactive platycodins from Platycodonis Radix: Phytochemistry, pharmacological activities, toxicology and pharmacokinetics. Food Chem. 2020;327: 127029. [11] Yang L, Wan Y, Li W, Liu C, Li H, Dong Z, et al. Targeting intestinal flora and its metabolism to explore the laxative effects of rhubarb. Appl Microbiol Biotechnol. 2022;106(4):1615-31. [12] Mosleh G, Zaeri M, Hemmati S, Mohagheghzadeh A. A comprehensive review on rhubarb astringent/laxative actions and the role of aquaporins as hub genes. Phytochem Rev. 2023;22(3):565-86. [13] Husain I, Bala K, Khan IA, Khan SI. A review on phytochemicals, pharmacological activities, drug interactions, and associated toxicities of licorice (Glycyrrhiza sp). Food Front. 2021;2(4):449-85. [14] Chrzanowski J, Chrzanowska A, Graboń W. Glycyrrhizin: An old weapon against a novel coronavirus. Phytother Res. 2021;35(2):629-36. [15] Zhang Y, Geng X, Tan Y, Li Q, Xu C, Xu J, et al. New understanding of the damage of SARS-CoV-2 infection outside the respiratory system. Biomed Pharmacother. 2020;127: 110195. [16] Tian Y, Rong L, Nian W, He Y. gastrointestinal features in COVID-19 and the possibility of faecal transmission. Aliment Pharmacol Ther. 2020;51(9):843-51. [17] Huang K, Zhang P, Zhang Z, Youn ZY, Wang C, Zhang H, et al. Traditional Chinese Medicine (TCM) in the treatment of COVID-19 and other viral infections: efficacies and mechanisms. Pharmacol Ther. 2021;225: 107843. [18] Uema M, Hyuga M, Yonemitsu K, Hyuga S, Amakura Y, Uchiyama N, et al. Antiviral effect of ephedrine alkaloids-free ephedra herb extract against SARS-CoV-2 in vitro. Microorganisms. 2023;11(2):534. [19] Mei J, Zhou Y, Yang X, Zhang F, Liu X, Yu B. Active components in Ephedra sinica stapf disrupt the interaction between ACE2 and SARS-CoV-2 RBD: Potent COVID-19 therapeutic agents. J Ethnopharmacol. 2021;278: 114303. [20] Yu S, Chen Y, Xiang Y, Lin H, Wang M, Ye W, et al. Pseudoephedrine and its derivatives antagonize wild and mutated severe acute respiratory syndrome-CoV-2 viruses through blocking virus invasion and antiinflammatory effect. Phytother Res. 2021;35(10):5847-60. [21] Yi Y, Zhang M, Xue H, Yu R, Bao Y-O, Kuang Y, et al. Schaftoside inhibits 3CLpro and PLpro of SARS-CoV-2 virus and regulates immune response and inflammation of host cells for the treatment of COVID-19. Acta Pharm Sin B. 2022;12(11):4154-64. [22] Yi Y, Li J, Lai X, Zhang M, Kuang Y, Bao Y-O, et al. Natural triterpenoids from licorice potently inhibit SARS-CoV-2 infection. J Adv Res. 2022;36:201-10. [23] Yu S, Zhu Y, Xu J, Yao G, Zhang P, Wang M, et al. Glycyrrhizic acid exerts inhibitory activity against the spike protein of SARS-CoV-2. Phytomedicine. 2021;85: 153364. [24] Kim TY, Jeon S, Jang Y, Gotina L, Won J, Ju YH, et al. Platycodin D, a natural component of Platycodon grandiflorum, prevents both lysosome- and TMPRSS2-driven SARS-CoV-2 infection by hindering membrane fusion. Exp Mol Med. 2021;53(5):956-72. [25] Rolta R, Salaria D, Sharma P, Sharma B, Kumar V, Rathi B, et al. Phytocompounds of Rheum emodi, Thymus serpyllum, and Artemisia annua inhibit spike protein of SARS-CoV-2 binding to ACE2 receptor: In silico approach. Curr Pharmacol Rep. 2021;7(4):135-49. [26] Nawrot-Hadzik I, Zmudzinski M, Matkowski A, Preissner R, Kęsik-Brodacka M, Hadzik J, et al. Reynoutria Rhizomes as a natural source of SARS-CoV-2 Mpro inhibitors-molecular docking and in vitro study. Pharmaceuticals. 2021;14(8):742. [27] Ahmad I, Pawara R, Surana S, Patel H. The repurposed ACE2 inhibitors: SARS-CoV-2 entry blockers of Covid-19. Top Curr Chem. 2021;379:1-49. [28] Xiang Y, Wang M, Chen H, Chen L. Potential therapeutic approaches for the early entry of SARS-CoV-2 by interrupting the interaction between the spike protein on SARS-CoV-2 and angiotensin-converting enzyme 2 (ACE2). Biochem Pharmacol. 2021;192: 114724. [29] Xiang Y, Zhai G, Li Y, Wang M, Chen X, Wang R, et al. Ginkgolic acids inhibit SARS-CoV-2 and its variants by blocking the spike protein/ACE2 interplay. Int J Biol Macromol. 2023;226:780-92. [30] Xiong J, Xiang Y, Huang Z, Liu X, Wang M, Ge G, et al. Structure-based virtual screening and identification of potential inhibitors of SARS-CoV-2 S-RBD and ACE2 interaction. Front Chem. 2021;9: 740702. [31] Ru J, Li P, Wang J, Zhou W, Li B, Huang C, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminf. 2014;6(1):13. [32] Scott G, Awika JM. Effect of protein-starch interactions on starch retrogradation and implications for food product quality. Compr Rev Food Sci Food Saf. 2023;22(3):2081-111. [33] Zarei A, Ramazani A, Rezaei A, Moradi S. Screening of honey bee pollen constituents against COVID-19: an emerging hot spot in targeting SARS-CoV-2-ACE-2 interaction. Nat Prod Res. 2023;37(6):974-80. [34] Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47(7):1739-49. [35] Wang R, Hu Q, Wang H, Zhu G, Wang M, Zhang Q, et al. Identification of Vitamin K3 and its analogues as covalent inhibitors of SARS-CoV-2 3CLpro. Int J Biol Macromol. 2021;183:182-92. [36] Wang R, Chen X, Li H, Chen X, Sun D, Yu D, et al. Danshensu inhibits SARS-CoV-2 by targeting its main protease as a specific covalent inhibitor and discovery of bifunctional compounds eliciting antiviral and anti-inflammatory activity. Int J Biol Macromol. 2023;257:128623. [37] Wang R, Zhai G, Zhu G, Wang M, Gong X, Zhang W, et al. Discovery and mechanism of action of Thonzonium bromide from an FDA-approved drug library with potent and broad-spectrum inhibitory activity against main proteases of human coronaviruses. Bioorg Chem. 2023;130: 106264. [38] Asl MN, Hosseinzadeh H. Review of pharmacological effects of glycyrrhiza sp. and its bioactive compounds. Phytother Res. 2008;22(6):709-24. [39] Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581(7807):215-20. [40] Zhou B, Hao Q, Liang Y, Kong E. Protein palmitoylation in cancer: molecular functions and therapeutic potential. Mol Oncol. 2023;17(1):3-26. [41] Saville JW, Mannar D, Zhu X, Srivastava SS, Berezuk AM, Demers J-P, et al. Structural and biochemical rationale for enhanced spike protein fitness in delta and kappa SARS-CoV-2 variants. Nat Commun. 2022;13(1):742. [42] Han P, Su C, Zhang Y, Bai C, Zheng A, Qiao C, et al. Molecular insights into receptor binding of recent emerging SARS-CoV-2 variants. Nat Commun. 2021;12(1):6103. [43] Tan J, Verschueren KH, Anand K, Shen J, Yang M, Xu Y, et al. pH-dependent conformational flexibility of the SARS-CoV main proteinase (Mpro) dimer: molecular dynamics simulations and multiple X-ray structure analyses. J Mol Biol. 2005;354(1):25-40. [44] Ma C, Xia Z, Sacco MD, Hu Y, Townsend JA, Meng X, et al. Discovery of di- and trihaloacetamides as covalent SARS-CoV-2 main protease inhibitors with high target specificity. J Am Chem Soc. 2021;143(49):20697-709. [45] Piva R, Ruggeri B, Williams M, Costa G, Tamagno I, Ferrero D, et al. CEP-18770: A novel, orally active proteasome inhibitor with a tumor-selective pharmacologic profile competitive with bortezomib. Blood. 2008;111(5):2765-75. [46] Pérez-Vargas J, Worrall LJ, Olmstead AD, Anh-Tien T, Jaeyong L, Ivan V, et al. A novel class of broad-spectrum active-site-directed 3C-like protease inhibitors with nanomolar antiviral activity against highly immune-evasive SARS-CoV-2 Omicron subvariants. Emerg Microbes Infec. 2023;12(2):2246594. [47] Vázquez-Calvo A, et al. Antiviral properties of the natural polyphenols delphinidin and epigallocatechin gallate against the flaviviruses West Nile virus, Zika virus, and dengue virus. Front Microbiol. 2017;8:1314. [48] Lamy S, Blanchette M, Michaud-Levesque J, Lafleur R, Durocher Y, Moghrabi A, et al. Delphinidin, a dietary anthocyanidin, inhibits vascular endothelial growth factor receptor-2 phosphorylation. Carcinogenesis. 2006;27(5):989-96. [49] Sharma A, Choi H-K, Kim Y-K, Lee H-J. Delphinidin and Its glycosides’ war on cancer: preclinical perspectives. Int J Mol Sci. 2021;22(21):11500. [50] Favot L, Martin S, Keravis T, Andriantsitohaina R, Lugnier C. Involvement of cyclin-dependent pathway in the inhibitory effect of delphinidin on angiogenesis. Cardiovasc Res. 2003;59(2):479-87. [51] Yun JM, Afaq F, Khan N, Mukhtar H. Delphinidin, an anthocyanidin in pigmented fruits and vegetables, induces apoptosis and cell cycle arrest in human colon cancer HCT116 cells. Mol Carcinog. 2009;48(3):260-70. [52] Hafeez BB, Siddiqui IA, Asim M, Malik A, Afaq F, Adhami VM, et al. A dietary anthocyanidin delphinidin induces apoptosis of human prostate cancer PC3 cells in vitro and in vivo: involvement of nuclear factor-κB signaling. Cancer Res. 2008;68(20):8564-72. [53] Martin S, Giannone G, Andriantsitohaina R, Martinez MC. Delphinidin, an active compound of red wine, inhibits endothelial cell apoptosis via nitric oxide pathway and regulation of calcium homeostasis. Br J Pharmacol. 2003;139(6):1095-102. [54] Chen Z, Zhang R, Shi W, Li L, Liu H, Liu Z, et al. The multifunctional benefits of naturally occurring delphinidin and its glycosides. J Agric Food Chem. 2019;67(41):11288-306. [55] Sadeer NB, Haddad JG, Ezzat MO, Desprès P, Abdallah HH, Zengin G, et al. Rhizophora mucronata Lam., a halophyte from Mauritius Island, inhibits the entry of Zika virus in human cells (A549)-an in vitro and in silico analysis, J Biomol Struct Dyn. 2023, 1-11. [56] Moghe A, Deshpande M, Kamyab S, Chunarkar-Patil P, Nandi S, Bhatt N. Hepatitis C Virus (HCV) and the role of phytochemicals in the antiviral effects of different medicinal plants against infection. 2024:341-371. [57] Choudhary D. PAN M-H Antiviral effects of anthocyanins and phytochemicalsas natural dietary compounds on different virus sources. Curr Res Nutr Food Sci. 2020;8(3):674-81. [58] Altomare A, Baron G, Cambiaghi G, Ferrario G, Zoanni B, Vedova LD, et al. Screening of Mpro protease (SARS-CoV-2) covalent inhibitors from an anthocyanin-rich blueberry extract ssing an HRMS-based analytical platform. Molecules. 2024;29(11):2702. [59] Husain A, Chanana H, Khan SA, Dhanalekshmi UM, Ali M, Alghamdi AA, et al. Chemistry and pharmacological actions of delphinidin, a dietary purple pigment in anthocyanidin and anthocyanin forms. Front Nutr. 2022;9: 746881. [60] Shan J-J, Zou J-S, Xie T, Kang A, Zhou W, Xu J-Y, et al. Effects of Gancao on pharmacokinetic profiles of platycodin D and deapio-platycodin D in Jiegeng. J Ethnopharmacol. 2015;170:50-6. [61] Zhong Y-H, Liang J, Qin Q, Wang Y-J, Peng Y-M, Zhang T, et al. The activities and mechanisms of intestinal microbiota metabolites of TCM herbal ingredients could be illustrated by a strategy integrating spectrum-effects, network pharmacology, metabolomics and molecular docking analysis: platycodin D as an example. Phytomedicine. 2023;115: 154831. [62] Elseginy SA, Fayed B, Hamdy R, Mahrous N, Mostafa A, Almehdi AM, et al. Promising anti-SARS-CoV-2 drugs by effective dual targeting against the viral and host proteases. Bioorg Med Chem Lett. 2021;43: 128099. [63] Sabarimurugan S, Purushothaman I, Swaminathan R, Dharmarajan A, Warrier S, Kothandan S. Computational screening of dual inhibitors from FDA approved antiviral drugs on SARS-CoV-2 spike protein and the main protease using molecular docking approach. Acta Virol. 2021;65(2):160-72. [64] Liu W, Wang J, Wang S, Yue K, Hu Y, Liu X, et al. Discovery of new non-covalent and covalent inhibitors targeting SARS-CoV-2 papain-like protease and main protease. Bioorg Chem. 2023;140: 106830. |