[1] Hutchings MI, Truman AW, Wilkinson B. Antibiotics: past, present and future. Curr Opin Microbiol. 2019;51:72-80. [2] de la Fuente-Nunez C, Cesaro A, Hancock REW. Antibiotic failure: beyond antimicrobial resistance. Drug Resist Updates. 2023;71:101012-21. [3] Okeke IN, de Kraker MEA, Van Boeckel TP, Kumar CK, Schmitt H, Gales AC, Bertagnolio S, Sharland M, Laxminarayan R. The scope of the antimicrobial resistance challenge. Lancet. 2024;403(10442):2426-38. [4] Ho CS, Wong CTH, Aung TT, Lakshminarayanan R, Mehta JS, Rauz S, McNally A, Kintses B, Peacock SJ, de la Fuente-Nunez C, Hancock REW, Ting DSJ. Antimicrobial resistance: a concise update. Lancet Microbe. 2025;6(1):100947-60. [5] Antimicrobial Resistance C. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629-55. [6] Morrison L, Zembower TR. Antimicrobial resistance. Gastrointest Endosc Clin N Am. 2020;30(4):619-35. [7] Vashistha A, Sharma N, Nanaji Y, Kumar D, Singh G, Barnwal RP, Yadav AK. Quorum sensing inhibitors as therapeutics: bacterial biofilm inhibition. Bioorg Chem. 2023;136:106551-70. [8] Papenfort K, Bassler BL. Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol. 2016;14(9):576-88. [9] Mukherjee S, Bassler BL. Bacterial quorum sensing in complex and dynamically changing environments. Nat Rev Microbiol. 2019;17(6):371-82. [10] Azimi S, Klementiev AD, Whiteley M, Diggle SP. Bacterial quorum sensing during infection. Annu Rev Microbiol. 2020;74(1):201-19. [11] Maiga A, Ampomah-Wireko M, Li H, Fan Z, Lin Z, Zhen H, Kpekura S, Wu C. Multidrug-resistant bacteria quorum-sensing inhibitors: a particular focus on Pseudomonas aeruginosa. Eur J Med Chem. 2025;281:117008-31. [12] Whiteley M, Diggle SP, Greenberg EP. Progress in and promise of bacterial quorum sensing research. Nature. 2017;551(7680):313-20. [13] Kalia VC, Patel SKS, Kang YC, Lee J-K. Quorum sensing inhibitors as antipathogens: biotechnological applications. Biotechnol Adv. 2019;37(1):68-90. [14] Defoirdt T. Quorum-sensing systems as targets for antivirulence therapy. Trends Microbiol. 2018;26(4):313-28. [15] Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83(3):770-803. [16] Lewis K, Lee RE, Brötz-Oesterhelt H, Hiller S, Rodnina MV, Schneider T, Weingarth M, Wohlgemuth I. Sophisticated natural products as antibiotics. Nature. 2024;632(8023):39-49. [17] Teplitski M, Robinson JB, Bauer WD. Plants secrete substances that mimic bacterial N-Acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant-Microbe In. 2000;13(6):637-48. [18] Xu S, Kang A, Tian Y, Li X, Qin S, Yang R, Guo Y. Plant flavonoids with antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA). ACS Infect Dis. 2024;10(9):3086-97. [19] Schiavone BI, Rosato A, Marilena M, Gibbons S, Bombardelli E, Verotta L, Franchini C, Corbo F. Biological evaluation of hyperforin and its hydrogenated analogue on bacterial growth and biofilm production. J Nat Prod. 2013;76(9):1819-23. [20] Guttroff C, Baykal A, Wang H, Popella P, Kraus F, Biber N, Krauss S, Gotz F, Plietker B. Polycyclic polyprenylated acylphloroglucinols: an emerging class of non-peptide-based MRSA- and VRE-active antibiotics. Angew Chem Int Ed. 2017;56(50):15852-6. [21] Deryabin D, Galadzhieva A, Kosyan D, Duskaev G. Plant-derived inhibitors of AHL-mediated quorum sensing in bacteria: modes of action. Int J Mol Sci. 2019;20(22):5588-609. [22] Norizan S, Yin W-F, Chan K-G. Caffeine as a potential quorum sensing inhibitor. Sensors. 2013;13(4):5117-29. [23] Zhou J-W, Luo H-Z, Jiang H, Jian T-K, Chen Z-Q, Jia A-Q. Hordenine: a novel quorum sensing inhibitor and antibiofilm agent against Pseudomonas aeruginosa. J Agric Food Chem. 2018;66(7):1620-8. [24] Jakobsen TH, Bragason SK, Phipps RK, Christensen LD, van Gennip M, Alhede M, Skindersoe M, Larsen TO, Høiby N, Bjarnsholt T, Givskov M. Food as a source for quorum sensing inhibitors: Iberin from horseradish revealed as a quorum sensing inhibitor of Pseudomonas aeruginosa. Appl Environ Microbiol. 2012;78(7):2410-21. [25] Lan X, Gu X, Zhang Y, Hu H, Shi Z, Xiong C, Huang X, Song B, Qiao Y, Sun W, Qi C, Zhang Y. Discovery of quorum sensing inhibitors against Pseudomonas aeruginosa from Aspergillus sp. NB12. Bioorg Chem. 2025;156:108230-40. [26] Zhang R, Ji Y, Zhang X, Kennelly EJ, Long C. Ethnopharmacology of Hypericum species in China: a comprehensive review on ethnobotany, phytochemistry and pharmacology. J Ethnopharmacol. 2020;254:112686-97. [27] Xia J, Hu B, Qian M, Zhang J, Wu L. Benzophenone Rhamnosides and Chromones from Hypericum seniawinii Maxim. Molecules. 2022;27(20):7056-65. [28] Yang XW, Grossman RB, Xu G. Research progress of polycyclic polyprenylated acylphloroglucinols. Chem Rev. 2018;118(7):3508-58. [29] Xie S, Zhou Y, Tan X, Sun W, Duan Y, Feng H, Sun L, Guo Y, Shi Z, Hao X, Chen G, Qi C, Zhang Y, Norwilsonnol A. an immunosuppressive polycyclic polyprenylated acylphloroglucinol with a spiro[5-oxatricyclododecane-[6.4.0.03,7]dodecane-6',1-1',2'-dioxane] system from Hypericum wilsonii. Org Chem Front. 2021;8(10):2280-6. [30] Sun H, Wang J, Zhen B, Wang X, Suo X, Lin M, Jiang J, Ji T. Polycyclic polyprenylated acylphloroglucinol derivatives from Hypericum pseudohenryi. Phytochemistry. 2021;187:112761-8. [31] Guo Y, Tong Q, Zhang N, Duan X, Cao Y, Zhu H, Xie S, Yang J, Zhang J, Liu Y, Xue Y, Zhang Y. Highly functionalized cyclohexanone-monocyclic polyprenylated acylphloroglucinols from Hypericum perforatum induce leukemia cell apoptosis. Org Chem Front. 2019;6(6):817-24. [32] Duan YL, Deng YF, Bu PF, Xie S, Guo Y, Shi Z, Guo Y, Cao Y, Qi C, Zhang Y. Discovery of nor-bicyclic polyprenylated acylphloroglucinols possessing diverse architectures with anti-hepatoma activities from Hypericum patulum. Bioorg Chem. 2021;111:104902-12. [33] Fobofou SA, Franke K, Sanna G, Porzel A, Bullita E, La Colla P, Wessjohann LA. Isolation and anticancer, anthelminthic, and antiviral (HIV) activity of acylphloroglucinols, and regioselective synthesis of empetrifranzinans from Hypericum roeperianum. Bioorg Med Chem. 2015;23(19):6327-34. [34] Zeng YR, Li YN, Lou HY, Jian JY, Gu W, Huang LJ, Du GH, Yuan CM, Hao XJ. Polycyclic polyprenylated acylphloroglucinol derivatives with neuroprotective effects from Hypericum monogynum. J Asian Nat Prod Res. 2021;23(1):73-81. [35] Seo E-K, Wani MC, Wall ME, Navarro H, Mukherjee R, Farnsworth NR, Kinghorn AD. New bioactive aromatic compounds from Vismia guianensis. Phytochemistry. 2000;55(1):35-42. [36] Duan Y, Guo Y, Deng Y, Bu P, Shi Z, Cao Y, Zhang Y, Hu H, Sun W, Qi C, Zhang Y, Norprzewalsone A. a Rearranged Polycyclic Polyprenylated Acylphloroglucinol with a Spiro[cyclopentane-1,3’-tricyclo[7.4.0.0.1,6]tridecane] Core from Hypericum przewalskii. J Org Chem. 2022;87(10):6824-31. [37] Duan Y, Sun W, Li Y, Shi Z, Li L, Zhang Y, Huang K, Zhang Z, Qi C, Zhang Y. Spirohypertones A and B as potent antipsoriatics: Tumor necrosis factor-α inhibitors with unprecedented chemical architectures. Acta Pharm Sin B. 2024;14(6):2646-56. [38] Lee J, Zhang L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell. 2015;6(1):26-41. |