Natural Products and Bioprospecting ›› 2025, Vol. 15 ›› Issue (4): 36-36.DOI: 10.1007/s13659-025-00518-7
• ORIGINAL ARTICLES • Previous Articles Next Articles
Cristina Gan1, Elisa Langa1, Gang Wang2, Fran?oise Van Bambeke2, Diego Ballestero1, María Rosa Pino-Otín1
Received:
2025-02-10
Accepted:
2025-05-04
Online:
2025-06-06
Published:
2025-08-23
Supported by:
Cristina Gan1, Elisa Langa1, Gang Wang2, Fran?oise Van Bambeke2, Diego Ballestero1, María Rosa Pino-Otín1
通讯作者:
María Rosa Pino-Otín, E-mail:rpino@usj.es
基金资助:
Cristina Gan, Elisa Langa, Gang Wang, Fran?oise Van Bambeke, Diego Ballestero, María Rosa Pino-Otín. Mechanisms of action and resistance prevention of synergistic thymol and carvacrol combinations with antibiotics in Staphylococcus aureus and Acinetobacter baumannii[J]. Natural Products and Bioprospecting, 2025, 15(4): 36-36.
Cristina Gan, Elisa Langa, Gang Wang, Fran?oise Van Bambeke, Diego Ballestero, María Rosa Pino-Otín. Mechanisms of action and resistance prevention of synergistic thymol and carvacrol combinations with antibiotics in Staphylococcus aureus and Acinetobacter baumannii[J]. 应用天然产物, 2025, 15(4): 36-36.
[1] Chavada J, Muneshwar K, Ghulaxe Y, Wani M, Sarda P, Huse S. Antibiotic resistance: challenges and strategies in combating infections. Cureus J Med Sci. 2023. https://doi.org/10.7759/cureus.46013. [2] Woo S, Marquez L, Crandall W, Risener C, Quave C. Recent advances in the discovery of plant-derived antimicrobial natural products to combat antimicrobial resistant pathogens: insights from 2018-2022. Nat Prod Rep. 2023;40:1271-90. https://doi.org/10.1039/d2np00090c. [3] Alvarez-Martínez F, Barrajón-Catalán E, Herranz-López M, Micol V. Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. Phytomedicine. 2021. https://doi.org/10.1016/j.phymed.2021.153626. [4] Seow Y, Yeo C, Chung H, Yuk H. Plant essential oils as active antimicrobial agents. Crit Rev Food Sci Nutr. 2014;54:625-44. https://doi.org/10.1080/10408398.2011.599504. [5] Bhardwaj D, Tiwari D, Upadhye V, Ramniwas S, Rautela I, Ballal S, et al. Discovery of new natural phytocompounds: the modern tools to fight against traditional bacterial pathogens. Curr Pharm Biotechnol. 2024. https://doi.org/10.2174/0113892010344474241011070242. [6] Sanhueza L, Melo R, Montero R, Maisey K, Mendoza L, Wilkens M. Synergistic interactions between phenolic compounds identified in grape pomace extract with antibiotics of different classes against Staphylococcus aureus and Escherichia coli. PLoS ONE. 2017;12:2. https://doi.org/10.1371/journal.pone.0172273. [7] Betoni JEC, Passarelli Mantovani R, Nunes Barbosa L, Di Stasi LC, Fernandes JA. Synergism between plant extract and antimicrobial drugs used on Staphylococcus aureus diseases. Mem Inst Oswaldo Cruz. 2006;101(4):387-90. https://doi.org/10.1590/s0074-02762006000400007. [8] Ayaz M, Ullah F, Sadiq A, Ullah F, Ovais M, Ahmed J, et al. Synergistic interactions of phytochemicals with antimicrobial agents: potential strategy to counteract drug resistance. Chem Biol Interact. 2019;308:294-303. https://doi.org/10.1016/j.cbi.2019.05.050. [9] Lee SJ, Umano K, Shibamoto T, Lee KG. Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties. Food Chem. 2005;91(1):131-7. https://doi.org/10.1016/j.foodchem.2004.05.056. [10] Botelho M, Nogueira N, Bastos G, Fonseca S, Lemos T, Matos F, et al. Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens. Braz J Med Biol Res. 2007;40:349-56. [11] Sim J, Khazandi M, Chan W, Trott D, Deo P. Antimicrobial activity of thyme oil, oregano oil, thymol and carvacrol against sensitive and resistant microbial isolates from dogs with otitis externa. Veterin Dermatol. 2019;30:524. https://doi.org/10.1111/vde.12794. [12] Rota M, Herrera A, Martínez R, Sotomayor J, Jordán M. Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essential oils. Food Control. 2008;19:681-7. https://doi.org/10.1016/j.foodcont.2007.07.007. [13] Maczka W, Twardawska M, Grabarczyk M, Winska K. Carvacrol-A Natural Phenolic Compound with Antimicrobial Properties. Antibiotics-Basel. 2023;12:5. https://doi.org/10.3390/antibiotics12050824. [14] Hamoud R, Zimmermann S, Reichling J, Wink M. Synergistic interactions in two-drug and three-drug combinations (thymol, EDTA and vancomycin) against multi drug resistant bacteria including E. coli. Phytomedicine. 2014;21(4):443-7. https://doi.org/10.1016/j.phymed.2013.10.016. [15] Khan I, Bahuguna A, Shukla S, Aziz F, Chauhan A, Ansari M, et al. Antimicrobial potential of the food-grade additive carvacrol against uropathogenic E coli based on membrane depolarization, reactive oxygen species generation, and molecular docking analysis. Microbial Pathog. 2020. https://doi.org/10.1016/j.micpath.2020.104046. [16] Engel J, Heckler C, Tondo E, Daroit D, Malheiros P. Antimicrobial activity of free and liposome-encapsulated thymol and carvacrol against Salmonella and Staphylococcus aureus adhered to stainless steel. Int J Food Microbiol. 2017;252:18-23. https://doi.org/10.1016/j.ijfoodmicro.2017.04.003. [17] Heckler C, Sant’anna V, Brandelli A, Malheiros PS. Combined effect of carvacrol, thymol and nisin against Staphylococcus aureus and Salmonella Enteritidis. Anais Da Academia Brasileira De Ciencias. 2021. https://doi.org/10.1590/0001-3765202120210550. [18] Chen H, Zhong Q. Lactobionic acid enhances the synergistic effect of nisin and thymol against Listeria monocytogenes Scott A in tryptic soy broth and milk. Int J Food Microbiol. 2017;260:36-41. https://doi.org/10.1016/j.ijfoodmicro.2017.08.013. [19] Cusimano MG, Di Stefano V, La Giglia M, Lo Presti VDM, Schillaci D, Pomilio F, et al. Control of growth and persistence of listeria monocytogenes and beta-lactam-resistant Escherichia coli by thymol in food processing settings. Molecules. 2020;25:2. https://doi.org/10.3390/molecules25020383. [20] Wijesundara N, Lee S, Cheng Z, Davidson R, Rupasinghe H. Carvacrol exhibits rapid bactericidal activity against Streptococcus pyogenes through cell membrane damage. Sci Rep. 2021. https://doi.org/10.1038/s41598-020-79713-0. [21] de Souza G, Radai J, Vaz M, da Silva K, Fraga T, Barbosa L, et al. In vitro and in vivo antibacterial activity assays of carvacrol: A candidate for development of innovative treatments against KPC-producing Klebsiella pneumoniae. PLoS ONE. 2021. https://doi.org/10.1371/journal.pone.0246003. [22] Gan C, Langa E, Valenzuela A, Ballestero D, Pino-Otín M. Synergistic Activity of thymol with commercial antibiotics against critical and high WHO priority pathogenic bacteria. Plants. 2023. https://doi.org/10.3390/plants12091868. [23] Aleksic Sabo V, Nikolic I, Mimica-Dukic N, Knezevic P. Anti-Acinetobacter baumanniiactivity of selected phytochemicals alone, in binary combinations and in combinations with conventional antibiotics. Nat Prod Res. 2021;35(24):5964-7. https://doi.org/10.1080/14786419.2020.1808635. [24] Bisso Ndezo B, Tokam Kuate CR, Dzoyem JP. Synergistic antibiofilm efficacy of thymol and piperine in combination with three aminoglycoside antibiotics against Klebsiella pneumoniae biofilms. Canad J Infect Dis Med Microbiol. 2021;2021:7029944. https://doi.org/10.1155/2021/7029944. [25] Palaniappan K, Holley RA. Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria. Int J Food Microbiol. 2010;140(2-3):164-8. https://doi.org/10.1016/j.ijfoodmicro.2010.04.001. [26] Jayakumar D, Mini M, Kumar P, Vaikkathillam P, Mohan A, Khan S. Synergistic effect of thymol-ciprofloxacin combination on planktonic cells and biofilm of Pseudomonas aeruginosa. Curr Microbiol. 2023;81:1. https://doi.org/10.1007/s00284-023-03546-z. [27] Miladi H, Zmantar T, Kouidhi B, Chaabouni Y, Mandouani K, Bakhrouf A, et al. Use of carvacrol, thymol, and eugenol for biofilm eradication and resistance modifying susceptibility of Salmonella enterica serovar Typhimurium strains to nalidixic acid. Microb Pathog. 2017;104:56-63. https://doi.org/10.1016/j.micpath.2017.01.012. [28] Bonetti A, Tugnoli B, Piva A, Grilli E. Thymol as an adjuvant to restore antibiotic efficacy and reduce antimicrobial resistance and virulence gene expression in enterotoxigenic Escherichia coli Strains. Antibiotics. 2022. https://doi.org/10.3390/antibiotics11081073. [29] Pei R, Zhou F, Ji B, Xu J. Evaluation of Combined Antibacterial Effects of Eugenol, Cinnamaldehyde, Thymol, and Carvacrol against. J Food Sci. 2009;74:7. https://doi.org/10.1111/j.1750-3841.2009.01287.x. [30] EUCAST. EUCAST Definitive Document EDef 12 Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents. Clin Microbiol Infect. 2000;2000(6):9. https://doi.org/10.1046/j.1469-0691.2000.00149.x. [31] Peleg M, Corradini MG, Normand MD. The logistic (Verhulst) model for sigmoid microbial growth curves revisited. Food Res Int. 2007;40:7. https://doi.org/10.1016/j.foodres.2007.01.012. [32] Peeters E, Nelis H, Coenye T. Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J Microbiol Methods. 2008;72:2. https://doi.org/10.1016/j.mimet.2007.11.010. [33] Merritt JH, Kadouri DE, O’Toole GA. Growing and Analyzing Static Biofilms. Curr Protocols Microbiol. 2005. https://doi.org/10.1002/9780471729259.mc01b01s00. [34] Niven GW, Mulholland F. Cell membrane integrity and lysis in Lactococcus lactis: the detection of a population of permeable cells in post-logarithmic phase cultures. J Appl Microbiol. 1998;84:1. https://doi.org/10.1046/j.1365-2672.1997.00316.x. [35] Krasne S. Interactions of voltage-sensing dyes with membranes. II. Spectrophotometric and electrical correlates of cyanine-dye adsorption to membranes. Biophys J. 1980;30:3. https://doi.org/10.1016/s0006-3495(80)85106-x. [36] Magnet S, Courvalin P, Lambert T. Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in strain BM4454. Antimicrobial Agents Chemother. 2001;45:12. https://doi.org/10.1128/aac.45.12.3375-3380.2001. [37] da Silva A, Cândido A, Júnior E, de Eyu G, Moura M, Souza R, et al. Bactericidal and synergistic effects of lippia origanoides essential oil and its main constituents against multidrug-resistant strains of Acinetobacter baumannii. ACS Omega. 2024;9(43):43927-39. https://doi.org/10.1021/acsomega.4c07565. [38] Nikolic I, Aleksic Sabo V, Gavric D, Knezevic P. Anti-Staphylococcus aureus activity of volatile phytochemicals and their combinations with conventional antibiotics against methicillin-susceptible S. aureus (MSSA) and Methicillin-Resistant S aureus (MRSA) Strains. Antibiotics. 2024;13:11. https://doi.org/10.3390/antibiotics13111030. [39] O’Toole G, Kaplan H, Kolter R. Biofilm formation as microbial development. Annu Rev Microbiol. 2000;54:49-79. [40] Solano C, Echeverz M, Lasa I. Biofilm dispersion and quorum sensing. Curr Opin Microbiol. 2014;18:96-104. https://doi.org/10.1016/j.mib.2014.02.008. [41] Wu H, Lee B, Yang L, Wang H, Givskov M, Molin S, et al. Effects of ginseng on Pseudomonas aeruginosa motility and biofilm formation. Fems Immunol Med Microbiol. 2011;62(1):49-56. https://doi.org/10.1111/j.1574-695X.2011.00787.x. [42] Walczak M, Michalska-Sionkowska M, Olkiewicz D, Tarnawska P, Warzynska O. Potential of carvacrol and thymol in reducing biofilm formation on technical surfaces. Molecules. 2021;26:9. https://doi.org/10.3390/molecules26092723. [43] Peng Q, Tang X, Dong W, Zhi Z, Zhong T, Lin S, et al. Carvacrol inhibits bacterial polysaccharide intracellular adhesin synthesis and biofilm formation of mucoid Staphylococcus aureus: an in vitro and in vivo study. RSC Adv. 2023;13(41):28743-52. https://doi.org/10.1039/d3ra02711b. [44] Nostro A, Marino A, Ginestra G, Cellini L, Di Giulio M, Bisignano G. Effects of adaptation to carvacrol on Staphylococcus aureus in the planktonic and biofilm phases. Biofouling. 2017;33(6):470-80. https://doi.org/10.1080/08927014.2017.1323080. [45] Tapia-Rodriguez M, Cantu-Soto E, Vazquez-Armenta F, Bernal-Mercado A, Ayala-Zavala J. Inhibition of Acinetobacter baumannii Biofilm Formation by Terpenes from Oregano (Lippia graveolens) Essential Oil. Antibiotics. 2023;12:10. https://doi.org/10.3390/antibiotics12101539. [46] Pakzad I, Yarkarami F, Kalani BS, Shafieian M, Hematian A. Inhibitory effects of carvacrol on biofilm formation in colistin heteroresistant Acinetobacter baumannii clinical isolates. Curr Drug Discov Technol. 2024;21(1): e280923221542. https://doi.org/10.2174/0115701638253395230919112548. [47] Li J, Chen X, Lu T, Zhang J, Dai S, Sun J, et al. Increased Activity of β-Lactam antibiotics in combination with carvacrol against MRSA bacteremia and catheter-associated biofilm infections. ACS Infect Dis. 2023;9(12):2482-93. https://doi.org/10.1021/acsinfecdis.3c00338. [48] Burt S, Ojo-Fakunle V, Woertman J, Veldhuizen E. The natural antimicrobial carvacrol inhibits quorum sensing in chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations. PLoS ONE. 2014;9:4. https://doi.org/10.1371/journal.pone.0093414. [49] Richmond G, Evans L, Anderson M, Wand M, Bonney L, Ivens A, et al. The Acinetobacter baumannii TwoComponent System AdeRS Regulates Genes Required for Multidrug Efflux, Biofilm Formation, and Virulence in a Strain-Specific Manner (vol 7, e00430-16, 2016). MBIO. 2016;7(3). https://doi.org/10.1128/mBio.00852-16. [50] Abd El-Rahman O, Rasslan F, Hassan S, Ashour H, Wasfi R. The RND efflux pump gene expression in the biofilm formation of Acinetobacter baumannii. Antibiotics. 2023;12:2. https://doi.org/10.3390/antibiotics12020419. [51] Kim C, Park G, Ko Y, Kang S, Jang S. Relationships between relative expression of RND Efflux Pump Genes, H33342 efflux activity, biofilm-forming activity, and antimicrobial resistance in Acinetobacter baumannii clinical isolates. Jpn J Infect Dis. 2021;74(6):499-506. https://doi.org/10.7883/yoken.BID.2020.765. [52] Navidifar T, Amin M, Rashno M. Effects of sub-inhibitory concentrations of meropenem and tigecycline on the expression of genes regulating pili, efflux pumps and virulence factors involved in biofilm formation by Acinetobacter baumannii. Infect Drug Resistance. 2019;12:1099-111. https://doi.org/10.2147/IDR.S199993. [53] Yoshizawa S, Fourmy D, Puglisi JD. Structural origins of gentamicin antibiotic action. EMBO J. 1998;17:22. https://doi.org/10.1093/emboj/17.22.6437. [54] Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature. 2000;407:6802. https://doi.org/10.1038/35030019. [55] Syroegin EA, Flemmich L, Klepacki D, Vázquez-Laslop N, Micura R, Polikanov YS. Structural basis for the context-specific action of the classic peptidyl transferase inhibitor chloramphenicol. Nat Struct Mol Biol. 2022;29:2. https://doi.org/10.1038/s41594-022-00720-y. [56] Lang M, Carvalho A, Baharoglu Z, Mazel D. Aminoglycoside uptake, stress, and potentiation in Gram-negative bacteria: new therapies with old molecules. Microbiol Mol Biol Rev. 2023;87:4. https://doi.org/10.1128/mmbr.00036-22. [57] Di Pasqua R, Betts G, Hoskins N, Edwards M, Ercolini D, Mauriello G. Membrane toxicity of antimicrobial compounds from essential oils. J Agricult Food Chem. 2007;55(12):4863-70. https://doi.org/10.1021/jf0636465. [58] Souza E, Oliveira C, Stamford T, Conceiçao M, Neto N. Influence of carvacrol and thymol on the physiological attributes, enterotoxin production and surface characteristics of Staphylococcus aureus strains isolated from foods. Braz J Microbiol. 2013;44(1):29-35. [59] Wang L, Wang M, Zeng X, Zhang Z, Gong D, Huang Y. Membrane destruction and DNA Binding of Staphylococcus aureus cells induced by carvacrol and its combined effect with a pulsed electric field. J Agric Food Chem. 2016;64(32):6355-63. https://doi.org/10.1021/acs.jafc.6b02507. [60] Lambert RJW, Skandamis PN, Coote PJ, Nychas GJE. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol. 2001;91(3):453-62. https://doi.org/10.1046/j.1365-2672.2001.01428.x. [61] Mouwakeh A, Kincses A, Nové M, Mosolygó T, Mohácsi-Farkas C, Kiskó G, et al. Nigella sativa essential oil and its bioactive compounds as resistance modifiers against Staphylococcus aureus. Phytother Res. 2019;33(4):1010-8. https://doi.org/10.1002/ptr.6294. [62] Li Q, Huang K, Pan S, Su C, Bi J, Lu X. Thymol disrupts cell homeostasis and inhibits the growth of Staphylococcus aureus. Contrast Media Mol Imaging. 2022. https://doi.org/10.1155/2022/8743096. [63] Chauhan AK, Kang SC. Thymol disrupts the membrane integrity of Salmonella ser. typhimurium in vitro and recovers infected macrophages from oxidative stress in an ex vivo model. Res Microbiol. 2014;165(7):559-65. https://doi.org/10.1016/j.resmic.2014.07.001. [64] Rhayour K, Bouchikhi T, Tantaoui-Elaraki A, Sendide K, Remmal A. The mechanism of bactericidal action of oregano and clove essential oils and of their phenolic major components on Escherichia coli and Bacillus subtilis. J Essent Oil Res. 2003;15(4):286-92. https://doi.org/10.1080/10412905.2003.9712144. [65] Miladi H, Zmantar T, Chaabouni Y, Fedhila K, Bakhrouf A, Mandouani K, et al. Antibacterial and efflux pump inhibitors of thymol and carvacrol against food-borne pathogens. Microb Pathog. 2016;99:95-100. https://doi.org/10.1016/j.micpath.2016.08.008. [66] Barbosa CRS, Scherf JR, Freitas TS, Menezes IRA, Pereira RLS, Santos JFS, et al. Effect of Carvacrol and Thymol on NorA efflux pump inhibition in multidrug-resistant (MDR) Staphylococcus aureus strains. J Bioenergetics Biomembranes. 2021;53:4. https://doi.org/10.1007/s10863-021-09906-3. [67] Cirino I, Menezes-Silva S, Silva H, de Souza E, Siqueira J. The essential oil from Origanum vulgare L. and its individual constituents carvacrol and thymol enhance the effect of tetracycline against Staphylococcus aureus. Chemotherapy. 2014;60(5-6):290-3. https://doi.org/10.1159/000381175. [68] Islam MT, Khalipha ABR, Bagchi R, Mondal M, Smrity SZ, Uddin SJ, et al. Anticancer activity of thymol: A literature-based review and docking study with Emphasis on its anticancer mechanisms. IUBMB Life. 2019;71(1):9-19. https://doi.org/10.1002/iub.1935. [69] Sharifi-Rad M, Varoni EM, Iriti M, Martorell M, Setzer WN, del Mar CM, et al. Carvacrol and human health: A comprehensive review. Phytother Res. 2018;32(9):1675-87. https://doi.org/10.1002/ptr.6103. [70] Kfoury M, Landy D, Ruellan S, Auezova L, Greige-Gerges H, Fourmentin S. Determination of formation constants and structural characterization of cyclodextrin inclusion complexes with two phenolic isomers: carvacrol and thymol. Beilstein J Org Chem. 2016;12:29-42. https://doi.org/10.3762/bjoc.12.5. [71] Chacón O, Forno N, Lapierre L, Muñoz R, Fresno M, San MB. Effect of Aloe barbadensis Miller (Aloe vera) associated with beta-lactam antibiotics on the occurrence of resistance in strains of Staphylococcus aureus and Streptococcus uberis. Eur J Integrat Med. 2019. https://doi.org/10.1016/j.eujim.2019.100996. [72] Hammer K, Carson C, Riley T. Effects of Melaleuca alternifolia (Tea Tree) essential oil and the major monoterpene Component Terpinen-4-ol on the development of single- and multistep antibiotic resistance and antimicrobial susceptibility. Antimicrobial Agents Chemother. 2012;56(2):909-15. https://doi.org/10.1128/AAC.05741-11. [73] Memar MY, Raei P, Alizadeh N, Aghdam MA, Kafil HS. Carvacrol and thymol: strong antimicrobial agents against resistant isolates. Rev Med Microbiol. 2017;28(2):63-8. https://doi.org/10.1097/mrm.0000000000000100. [74] Rumbo C, Gato E, López M, Alegrı?a CR, Fernández-Cuenca F, Martínez-Martínez L, et al. Contribution of Efflux Pumps, Porins, and β-Lactamases to Multidrug Resistance in Clinical Isolates of Acinetobacter baumannii. Antimicrobial Agents Chemother. 2013;57:11. https://doi.org/10.1128/aac.00730-13. [75] Leus I, Adamiak J, Trinh A, Smith R, Smith L, Richardson S, et al. Inactivation of AdeABC and AdeIJK efflux pumps elicits specific nonoverlapping transcriptional and phenotypic responses in Acinetobacter baumannii. Mol Microbiol. 2020;114(6):1049-65. https://doi.org/10.1111/mmi.14594. [76] Sloczynska A, Wand M, Bock L, Tyski S, Laudy A. Efflux-related carbapenem resistance in Acinetobacter baumannii is associated with two-component regulatory efflux systems’ alteration and insertion of ΔAbaR25-type island fragment. Int J Mol Sci. 2023;24:11. https://doi.org/10.3390/ijms24119525. [77] Zhu Y, Lu J, Zhao J, Zhang X, Yu H, Velkov T, et al. Complete genome sequence and genome-scale metabolic modelling of Acinetobacter baumannii type strain ATCC 19606. Int J Med Microbiol. 2020;310:3. https://doi.org/10.1016/j.ijmm.2020.151412. [78] Kohanski MA, DePristo MA, Collins JJ. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol Cell. 2010;37:3. https://doi.org/10.1016/j.molcel.2010.01.003. [79] Foti JJ, Devadoss B, Winkler J, Collins JJ, Walker GC. Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics. Science. 2012;336:6079. https://doi.org/10.1126/science.1219192. [80] Shapiro R, Antimicrobial-Induced DNA. Damage and Genomic Instability in Microbial Pathogens. PLoS Pathog. 2015;11:3. https://doi.org/10.1371/journal.ppat.1004678. [81] Qi W, Jonker MJ, de Leeuw W, Brul S, ter Kuile BH. Reactive oxygen species accelerate de novo acquisition of antibiotic resistance in E. coli. 2023;26(12). https://doi.org/10.1016/j.isci.2023.108373. [82] Pan Z, Fan L, Zhong Y, Guo J, Dong X-S, Xu X, et al. Quantitative proteomics reveals reduction in central carbon and energy metabolisms contributes to gentamicin resistance in Staphylococcus aureus. J Proteomics. 2023. https://doi.org/10.1016/j.jprot.2023.104849. [83] Shin B, Park C, Park W. Stress responses linked to antimicrobial resistance in Acinetobacter species. Appl Microbiol Biotechnol. 2020;104(4):1423-35. https://doi.org/10.1007/s00253-019-10317-z. [84] Monem S, Furmanek-Blaszk B, Łupkowska A, Kuczyńska-Wiśnik D, Stojowska-Swędrzyńska K, Laskowska E. Mechanisms protecting Acinetobacter baumannii against multiple stresses triggered by the host immune response, antibiotics and outside-host environment. Int J Mol Sci. 2020;21:15. https://doi.org/10.3390/ijms21155498. [85] Veras HNH, Rodrigues FFG, Botelho MA, Menezes IRAd, Coutinho HDM, Costa JGM. Enhancement of aminoglycosides and β-lactams antibiotic activity by essential oil of Lippia sidoides Cham. and the Thymol. Arab J Chem. 2017;10:S2790-5. |
[1] | Darko Jenic, Helen Waller, Helen Collins, Clett Erridge. Reversal of Tetracycline Resistance by Cepharanthine, Cinchonidine, Ellagic Acid and Propyl Gallate in a Multi-drug Resistant Escherichia coli [J]. Natural Products and Bioprospecting, 2021, 11(3): 345-356. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||