[1] Caparco AA, Dautel DR, Champion JA. Protein mediated enzyme immobilization. Small. 2022;18(19):2106425. https://doi.org/10.1002/smll.202106425. [2] Bilal M, Rasheed T, Zhao Y, Iqbal HMN. Agarose-chitosan hydrogel-immobilized horseradish peroxidase with sustainable bio-catalytic and dye degradation properties. Int J Biol Macromol. 2019;124:742-9. https://doi.org/10.1016/j.ijbiomac.2018.11.220. [3] Gao Y, Shah K, Kwok I, Wang M, Rome LH, Mahendra S. Immobilized fungal enzymes: Innovations and potential applications in biodegradation and biosynthesis. Biotechnol Adv. 2022;57:107936. https://doi.org/10.1016/j.biotechadv.2022.107936. [4] Mohammadi M, Habibi Z, Gandomkar S, Yousefi M. A novel approach for bioconjugation of Rhizomucor miehei lipase (RML) onto amine-functionalized supports. Int J Biol Macromol. 2018;117:523-31. https://doi.org/10.1016/j.ijbiomac.2018.05.218. [5] Zdarta J, Meyer AS, Jesionowski T, Pinelo M. Developments in support materials for immobilization of oxidoreductases: a comprehensive review. Adv Colloid Interface Sci. 2018;258:1-20. https://doi.org/10.1016/j.cis.2018.07.004. [6] Chen Q, Luo GS, Wang YJ. Orderly cascade of immobilized-enzyme catalysis and photocatalysis for continuous-microflow production of 2-phenylbenzothiazole. Green Chem. 2021;23(18):7074-83. https://doi.org/10.1039/d1gc01887f. [7] Shen Y, Wang M, Zhou J, Chen Y, Wu M, Yang Z, et al. Construction of Fe3O4@alpha-glucosidase magnetic nanoparticles for ligand fishing of alpha-glucosidase inhibitors from a natural tonic Epimedii Folium. Int J Biol Macromol. 2020;165:1361-72. https://doi.org/10.1016/j.ijbiomac.2020.10.018. [8] Feng W, Ji P. Enzymes immobilized on carbon nanotubes. Biotechnol Adv. 2011;29(6):889-95. https://doi.org/10.1016/j.biotechadv.2011.07.007. [9] Hu Y, Dai L, Liu D, Du W. Rationally designing hydrophobic UiO-66 support for the enhanced enzymatic performance of immobilized lipase. Green Chem. 2018;20(19):4500-6. https://doi.org/10.1039/c8gc01284a. [10] Sher H, Ali H, Rashid MH, Iftikhar F, Rehman SU, Nawaz MS, et al. Enzyme immobilization on metal-organic framework (MOF): effects on thermostability and function. Protein Pept Lett. 2019;26(9):636-47. https://doi.org/10.2174/0929866526666190430120046. [11] Muxika A, Etxabide A, Uranga J, Guerrero P, de la Caba K. Chitosan as a bioactive polymer: processing, properties and applications. Int J Biol Macromol. 2017;105:1358-68. https://doi.org/10.1016/j.ijbiomac.2017.07.087. [12] Hamed I, Ozogul F, Regenstein JM. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): a review. Trends Food Sci Technol. 2016;48:40-50. https://doi.org/10.1016/j.tifs.2015.11.007. [13] Urrutia P, Arrieta R, Alvarez L, Cardenas C, Mesa M, Wilson L. Immobilization of lipases in hydrophobic chitosan for selective hydrolysis of fish oil: the impact of support functionalization on lipase activity, selectivity and stability. Int J Biol Macromol. 2018;108:674-86. https://doi.org/10.1016/j.ijbiomac.2017.12.062. [14] Gulay B, Omur C, Murat K, Arica MY. Immobilization of Candida rugosa lipase on magnetic chitosan beads and application in flavor esters synthesis. Food Chem. 2022;366:130699. https://doi.org/10.1016/j.foodchem.2021.130699. [15] Kim JS, Lee S. Immobilization of trypsin from porcine pancreas onto chitosan nonwoven by covalent bonding. Polym. 2019;11(9):1462. https://doi.org/10.3390/polym11091462. [16] Wahba MI. Porous chitosan beads of superior mechanical properties for the covalent immobilization of enzymes. Int J Biol Macromol. 2017;105:894-904. https://doi.org/10.1016/j.ijbiomac.2017.07.102. [17] Liu CY, Li RY, Peng J, Qu D, Huang MM, Chen Y. Enhanced hydrolysis and antitumor efficacy of Epimedium flavonoids mediated by immobilized snailase on silica. Process Biochem. 2019;86:80-8. https://doi.org/10.1016/j.procbio.2019.06.020. [18] Lee CH, Lin TS, Mou CY. Mesoporous materials for encapsulating enzymes. Nano Today. 2009;4(2):165-79. https://doi.org/10.1016/j.nantod.2009.02.001. [19] Lei CH, Shin YS, Liu J, Ackerman EJ. Entrapping enzyme in a functionalized nanoporous support. J Am Chem Soc. 2002;124(38):11242-3. https://doi.org/10.1021/ja026855o. [20] Al-Shehri BM, Khder AERS, Ashour SS, Hamdy MS. A review: the utilization of mesoporous materials in wastewater treatment. Mater Res Express. 2019;6(12):122002. https://doi.org/10.1088/2053-1591/ab52af. [21] Rasmussen MK, Bordallo HN, Bordenalli MA, Akamatsu MA, Trezena AG, Tino-De-Franco M, et al. Assessing the efficiency of SBA-15 as a nanocarrier for diphtheria anatoxin. Microporous Mesoporous Mater. 2021;312:110763. https://doi.org/10.1016/j.micromeso.2020.110763. [22] Xiang X, Ding S, Suo H, Xu C, Gao Z, Hu Y. Fabrication of chitosan-mesoporous silica SBA-15 nanocomposites via functional ionic liquid as the bridging agent for PPL immobilization. Carbohyd Polym. 2018;182:245-53. https://doi.org/10.1016/j.carbpol.2017.11.031. [23] Zhao X, Zhao F, Zhong N. Production of diacylglycerols through glycerolysis with SBA-15 supported Thermomyces lanuginosus lipase as catalyst. J Sci Food Agric. 2020;100(4):1426-35. https://doi.org/10.1002/jsfa.10140. [24] Losito DW, Lopes PS, Ueoka AR, Fantini MCA, Oseliero PL, Andreo N, et al. Biocomposites based on SBA-15 and papain: characterization, enzymatic activity and cytotoxicity evaluation. Microporous Mesoporous Mater. 2021;325:43-56. https://doi.org/10.1016/j.micromeso.2021.111316. [25] Cong VT, Gaus K, Tilley RD, Gooding JJ. Rod-shaped mesoporous silica nanoparticles for nanomedicine: recent progress and perspectives. Expert Opin Drug Deliv. 2018;15(9):881-92. https://doi.org/10.1080/17425247.2018.1517748. [26] Marcucci SMP, Zanin GM, Arroyo PA. Synthesis of SBA-15 and pore-expanded SBA-15 and surface modification with tin for covalent lipase immobilization. Microporous Mesoporous Mater. 2022;337:111951. https://doi.org/10.1016/j.micromeso.2022.111951. [27] Wang X, He L, Huang J, Zhong N. Immobilization of lipases onto the halogen & haloalkanes modified SBA-15: enzymatic activity and glycerolysis performance study. Int J Biol Macromol. 2021;169:239-50. https://doi.org/10.1016/j.ijbiomac.2020.12.111. [28] Li Y, Wang W, Han P. Immobilization of Candida sp. 99-125 lipase onto silanized SBA-15 mesoporous materials by physical adsorption. Korean J Chem Eng. 2014;31(1):98-103. https://doi.org/10.1007/s11814-013-0198-1. [29] Ge A, Li J, Donnapee S, Bai Y, Liu J, He J, et al. Simultaneous determination of 2 aconitum alkaloids and 12 ginsenosides in Shenfu injection by ultraperformance liquid chromatography coupled with a photodiode array detector with few markers to determine multicomponents. J Food Drug Anal. 2015;23(2):267-78. https://doi.org/10.1016/j.jfda.2014.10.013. [30] Lu Y, Yang H, Hu Y, Li X. Nanomedicine-boosting icaritin-based immunotherapy of advanced hepatocellular carcinoma, affiliations department of polymeric materials. Mil Med Res. 2022;9(1):69. https://doi.org/10.1186/s40779-022-00433-9. [31] Lu Y, Luo Q, Jia X, Tam JP, Yang H, Shen Y, et al. Multidisciplinary strategies to enhance therapeutic effects of flavonoids from Epimedii Folium: integration of herbal medicine, enzyme engineering, and nanotechnology. J Pharm Anal. 2023;13(3):239-54. https://doi.org/10.1016/j.jpha.2022.12.001. [32] An DS, Cui CH, Lee HG, Wang L, Kim SC, Lee ST, et al. Identification and characterization of a novel Terrabacter ginsenosidimutans sp nov beta-glucosidase that transforms ginsenoside Rb1 into the rare gypenosides XVII and LXXV. Appl Environ Microbiol. 2010;76(17):5827-36. https://doi.org/10.1128/aem.00106-10. [33] Jin XF, Yu HS, Wang DM, Liu TQ, Liu CY, An DS, et al. Kinetics of a cloned special ginsenosidase hydrolyzing 3-o-glucoside of multi-protopanaxadiol-type ginsenosides, named ginsenosidase type III. J Microbiol Biotechnol. 2012;22(3):343-51. https://doi.org/10.4014/jmb.1107.07066. [34] Shen YP, Lu Y, Gao J, Zhu YT, Wang M, Jing SL, et al. Efficient preparation of rare Sagittatoside A from epimedin A, by recyclable aqueous organic two-phase enzymatic hydrolysis. Nat Prod Res. 2019;33(21):3095-102. https://doi.org/10.1080/14786419.2018.1519820. [35] Shen YP, Wang M, Zhou JW, Chen Y, Xu L, Wu M, et al. Eco-efficient biphasic enzymatic hydrolysis for the green production of rare baohuoside I. Enzyme Microb Technol. 2019;131:109431. https://doi.org/10.1016/j.enzmictec.2019.109431. [36] Li Y, Zhong N, Cheong LZ, Huang J, Chen H, Lin S. Immobilization of Candida antarctica Lipase B onto organically-modified SBA-15 for efficient production of soybean-based mono and diacylglycerols. Int J Biol Macromol. 2018;120:886-95. https://doi.org/10.1016/j.ijbiomac.2018.08.155. [37] Song SW, Hidajat K, Kawi S. Functionalized SBA-15 materials as carriers for controlled drug delivery: influence of surface properties on matrix-drug interactions. Langmuir. 2005;21(21):9568-75. https://doi.org/10.1021/la051167e. [38] Barbagallo RN, Spagna G, Palmeri R. Selection, characterization and comparison of β-glucosidase from mould and yeasts employable for enological applications. Enzyme Microb Technol. 2004;35(1):58-66. https://doi.org/10.1016/j.enzmictec.2004.03.005. [39] Chanquia SN, Benfeldt FV, Petrovai N, Santner P, Hollmann F, Eser BE, et al. Immobilization and application of fatty acid photodecarboxylase in deep eutectic solvents. Chembiochem. 2022;23(23):e202200482. https://doi.org/10.1002/cbic.202200482. [40] Feng C, Lu Y, Zhou Y, Pang H, Shen Y, Yang H. Convenient preparation of 2’’-O-Rhamnosyl Icariside II, a rare bioactive secondary flavonol glycoside, by recyclable and integrated biphase enzymatic hydrolysis. Pharmacogn Mag. 2019;14(60):147-55. https://doi.org/10.4103/pm.pm_398_18. [41] Silva JA, Macedo GP, Rodrigues DS, Giordano RLC, Goncalves LRB. Immobilization of Candida antarctica lipase B by covalent attachment on chitosan-based hydrogels using different support activation strategies. Biochem Eng J. 2012;60:16-24. https://doi.org/10.1016/j.bej.2011.09.011. [42] Gascon V, Diaz I, Marquez-Alvarez C, Blanco RM. Mesoporous silicas with tunable morphology for the immobilization of laccase. Molecules. 2014;19(6):7057-71. https://doi.org/10.3390/molecules19067057. [43] Yiu H, Wright P, Botting N. Enzyme immobilisation using SBA-15 mesoporous molecular sieves with functionalised surfaces. J Mol Catal B: Enzym. 2001;15(1-3):81-92. https://doi.org/10.1016/s1381-1177(01)00011-x. [44] Ashjari M, Mohammadi M, Badri R. Selective concentration of eicosapentaenoic acid and docosahexaenoic acid from fish oil with immobilized/stabilized preparations of Rhizopus oryzae lipase. J Mol Catal B: Enzym. 2015;122:147-55. https://doi.org/10.1016/j.molcatb.2015.08.017. [45] Cipolatti EP, Rios NS, Sousa JS, de Robert JM, da Silva AAT, Pinto MCC, et al. Synthesis of lipase/silica biocatalysts through the immobilization of CALB on porous SBA-15 and their application on the resolution of pharmaceutical derivatives and on nutraceutical enrichment of natural oil. Mol Catal. 2021;505:111529. https://doi.org/10.1016/j.mcat.2021.111529. [46] Garmroodi M, Mohammadi M, Ramazani A, Ashjari M, Mohammadi J, Sabour B, et al. Covalent binding of hyper-activated Rhizomucor miehei lipase (RML) on hetero-functionalized siliceous supports. Int J Biol Macromol. 2016;86:208-15. https://doi.org/10.1016/j.ijbiomac.2016.01.076. [47] Zhang YJ, Yang R, Wang L, Li Y, Han J, Yang Y, et al. Purification and characterization of a novel thermostable anticoagulant protein from medicinal leech Whitmania pigra Whitman. J Ethnopharmacol. 2022;288:114990. https://doi.org/10.1016/j.jep.2022.114990. [48] Yang Y, Thorhallsson AT, Rovira C, Holck J, Meyer AS, Yang H, et al. Improved enzymatic production of the fucosylated human milk oligosaccharide LNFP II with GH29B α-1,3/4-L-fucosidases. J Agric Food Chem. 2024;72(19):11013-28. https://doi.org/10.1021/acs.jafc.4c01547. [49] Wang M, Liang L, Wang R, Jia S, Xu C, Wang Y, et al. Narciclasine, a novel topoisomerase I inhibitor, exhibited potent anti-cancer activity against cancer cells. Nat Prod Bioprospect. 2023;13(1):27. https://doi.org/10.1007/s13659-023-00392-1. |