[1] Pivkin MV. Filamentous fungi associated with holothurians from the sea of Japan, off the primorye coast of Russia. Biol Bull. 2000;198:101-9. [2] Marcotullio MC, Rosati O, Curini M. Virescenols: sources, structures and chemistry. Nat Prod Commun. 2008;3:1934578X0800300627. [3] Afiyatullov SS, Kalinovsky AI, Antonov AS. New virescenosides from the marine-derived fungus Acremonium striatisporum. Nat Prod Commun. 2011;6:1934578X1100600803. [4] Afiyatullov SS, Kalinovsky AI, Antonov AS, Zhuravleva OI, Khudyakova YV, Aminin DL, et al. Isolation and structures of virescenosides from the marine-derived fungus Acremonium striatisporum. Phytochem Lett. 2016;15:66-71. [5] Zhuravleva OI, Antonov AS, Oleinikova GK, Khudyakova YV, Popov RS, Denisenko VA, et al. Virescenosides from the holothurian-associated fungus Acremonium striatisporum KMM 4401. Mar Drugs. 2019. https://doi.org/10.3390/md17110616. [6] Cagnoli-Bellavita N, Ceccherelli P, Ribaldi M, Polonsky J, Baskevitch-Varon Z, Varenne J. Structures of virescenosides D and H, new metabolites of Acremonium luzulae (Fuckel) Gams. J Chem Soc Perkin Trans 1. 1977. https://doi.org/10.1039/p19770000351. [7] Hussain H, Mamadalieva NZ, Ali I, Elizbit, Green IR, Wang D, et al. Fungal glycosides: structure and biological function. Trends Food Sci Technol. 2021;110:611-51. [8] Moussaïf M, Jacques P, Schaarwächter P, Budzikiewicz H, Thonart P. Cyclosporin C is the main antifungal compound produced by Acremonium luzulae. Appl Environ Microbiol. 1997;63:1739-43. [9] Wang X, Lin M, Xu D, Lai D, Zhou L. Structural diversity and biological activities of fungal cyclic peptides, excluding cyclodipeptides. Molecules. 2017. https://doi.org/10.3390/molecules22122069. [10] Corbett KM, Ford L, Warren DB, Pouton CW, Chalmers DK. Cyclosporin structure and permeability: from A to Z and beyond. J Med Chem. 2021;64:13131-51. [11] Falah F, Vasiee A, Ramezani M, Tabatabaee-Yazdi F, Mortazavi SA, Danesh A. Effect of immobilization, mutation, and microbial stresses on increasing production efficiency of “Cyclosporin A.” Biomass Convers Biorefin. 2022. https://doi.org/10.1007/s13399-022-02533-x. [12] Fuhrman JA. Microbial community structure and its functional implications. Nature. 2009;459:193-9. [13] Hu HL, van den Brink J, Gruben BS, Wösten HAB, Gu JD. de Vries RP Improved enzyme production by co-cultivation of Aspergillus niger and Aspergillus oryzae and with other fungi. Int Biodeterior Biodegrad. 2011;65:248-52. [14] Oppong-Danquah E, Budnicka P, Blümel M, Tasdemir D. Design of fungal co-cultivation based on comparative metabolomics and bioactivity for discovery of marine fungal agrochemicals. Mar Drugs. 2020. https://doi.org/10.3390/md18020073. [15] Hou L, Giraldo A, Groenewald J, Rämä T, Summerbell R, Huang G, et al. Redisposition of acremonium-like fungi in Hypocreales. Stud Mycol. 2023. https://doi.org/10.3114/sim.2023.105.02_supp. [16] Zhuravleva OI, Antonov AS, Trang VTD, Pivkin MV, Khudyakova YV, Denisenko VA, et al. New deoxyisoaustamide derivatives from the coral-derived fungus Penicillium dimorphosporum KMM 4689. Mar Drugs. 2021;19:553. [17] Dyshlovoy SA, Zhuravleva OI, Hauschild J, Busenbender T, Pelageev DN, Yurchenko AN, et al. New marine fungal deoxy-14,15-dehydroisoaustamide resensitizes prostate cancer cells to enzalutamide. Mar Drugs. 2023. https://doi.org/10.3390/md21010054. [18] Nesterenko LE, Popov RS, Zhuravleva OI, Kirichuk NN, Chausova VE, Krasnov KS, et al. A study of the metabolic profiles of Penicillium dimorphosporum KMM 4689 which led to its re-identification as Penicillium hispanicum. Fermentation. 2023. https://doi.org/10.3390/fermentation9040337. [19] Afiyatullov SS, Kalinovsky AI, Kuznetsova TA, Pivkin MV, Prokofeva NG, Dmitrenok PS, et al. New glycosides of the fungus Acremonium striatisporum isolated from a sea cucumber. J Nat Prod. 2004;67:1047-51. [20] Afiyatullov SS, Kuznetsova TA, Isakov VV, Pivkin MV, Prokofeva NG, Elyakov GB. New diterpenic altrosides of the fungus Acremonium striatisporum isolated from a sea cucumber. J Nat Prod. 2000;63:848-50. [21] Afiyatullov SS, Kalinovsky AI, Pivkin MV, Dmitrenok PS, Kuznetsova TA. New diterpene glycosides of the fungus Acremonium striatisporum isolated from a sea cucumber. Nat Prod Res. 2006;20:902-8. [22] Afiyatullov SS, Kalinovsky AI, Kuznetsova TA, Isakov VV, Pivkin MV, Dmitrenok PS, et al. New diterpene glycosides of the fungus Acremonium striatisporum isolated from a Sea Cucumber. J Nat Prod. 2002;65:641-4. [23] Cagnoli-Bellavita N, Cecherelli P, Ribaldi M, Polonsky J, Baskevitch Z. Virescenoside A and virescenoside B, new altroside metabolites of Oospora virescens. Gazz Chim Ital. 1969;99:1354-63. [24] Cagnoli-Bellavita N, Ceccherelli P, Mariani R, Polonsky J, Baskevitch Z. Structure du virescenoside C, nouveau métabolite de Oospora virescens (Link) Wallr. Eur J Biochem. 1970;15:356-9. [25] Wieland P, Prelog V. Über die Isolierung von Ergosterin, Ergosterin-palmitat und Ergosterin-peroxyd aus dem Mycel von Aspergillus fumigatus, mut. Helvola, Yuill. Helv Chim Acta. 1947;30:1028-30. [26] Yang Z, Pattamana K, Molino BF, Haydar SN, Cao Y, Bois F, et al. Novel oxidation of cyclosporin a: preparation of cyclosporin methyl vinyl ketone (Cs-MVK). Synlett. 2009;2009:2935-8. [27] Or YS, Lazarova T, Chen JS-H. Cyclosporins for the treatment of immune disorders. 2006. [28] Huang Z, Long Z, Su Z, Yang S. Novel cyclosporin derivatives for the treatment and prevention of a viral infection. 07.06.2012, 2017. [29] MB#323050. https://www.mycobank.org/page/Name%20details%20page/field/Mycobank%20%23/323050. Accessed 06 Mar 2024. [30] Hussain H, Mamadalieva NZ, Ali I, Green IR, Wang D, Zou L, et al. Fungal glycosides: structure and biological function. Trends Food Sci Technol. 2021;110:611-51. [31] Yurchenko AN, Nesterenko LE, Popov RS, Kirichuk NN, Chausova VE, Chingizova EA, et al. The metabolite profiling of Aspergillus fumigatus KMM4631 and its co-cultures with other marine fungi. Metabolites. 2023. https://doi.org/10.3390/metabo13111138. [32] Zhuravleva OI, Antonov AS, Trang VTD, Pivkin MV, Khudyakova YV, Denisenko VA, et al. New deoxyisoaustamide derivatives from the coral-derived fungus Penicillium dimorphosporum KMM 4689. Mar Drugs. 2021. https://doi.org/10.3390/md19010032. [33] Dyshlovoy SA, Zhuravleva OI, Hauschild J, Busenbender T, Pelageev DN, Yurchenko AN, et al. New marine fungal deoxy-14, 15-dehydroisoaustamide resensitizes prostate cancer cells to enzalutamide. Mar Drugs. 2023. https://doi.org/10.3390/md21010054. [34] Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol. 1990;172:4238-46. [35] Scholin CA, Herzog M, Sogin M, Anderson DM. Identification of group- and strain-specific genetic markers for globally distributed Alexandrium (Dinophyceae). II. Sequence analysis of a fragment of the LSU rRNA gene. J Phycol. 1994;30:999-1011. [36] Fehling J, Green DH, Davidson K, Bolch CJ, Bates SS. Domoic acid production by Pseudo-nitzschia seriata (Bacillariophyceae) in Scottish waters. J Phycol. 2004;40:622-30. [37] Carbone I, Kohn LM. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia. 1999;91:553-6. [38] Belousova EB, Zhuravleva OI, Yurchenko EA, Oleynikova GK, Antonov AS, Kirichuk NN, et al. New anti-hypoxic metabolites from co-culture of marine-derived fungi Aspergillus carneus KMM 4638 and Amphichorda sp. KMM 4639. Biomolecules. 2023. https://doi.org/10.3390/biom13050741. [39] Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547. [40] Tamura K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+ C-content biases. Mol Biol Evol. 1992;9:678-87. [41] Chambers MC, MacLean B, Burke R, Amodei D, Ruderman DL, Neumann S, et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol. 2012;30:918-20. [42] Pluskal T, Castillo S, Villar-Briones A, Orešič M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010. https://doi.org/10.1186/1471-2105-11-395. [43] Ruttkies C, Schymanski EL, Wolf S, Hollender J, Newmann S. MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J Cheminform. 2016;8:3. [44] Campbell J. High-throughput assessment of bacterial growth inhibition by optical density measurements. Curr Protoc Chem Biol. 2010;2:195-208. |