[1] Cox FE. History of the discovery of the malaria parasites and their vectors. Parasit Vectors. 2010;3(1):1-9. [2] WHO, World malaria report 2022. 2022: World Health Organization. [3] Ippolito MM, et al. Antimalarial drug resistance and implications for the WHO global technical strategy. Curr Epidemiol Rep. 2021;8:46-62. [4] Matthews H, Duffy CW, Merrick CJ. Checks and balances? DNA replication and the cell cycle in Plasmodium. Parasit Vectors. 2018;11(1):216. [5] Gupta DK, et al. DNA damage regulation and its role in drug-related phenotypes in the malaria parasites. Sci Rep. 2016;6(1):23603. [6] Blasco B, Leroy D, Fidock DA. Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic. Nat Med. 2017;23(8):917-28. [7] Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83(3):770-803. [8] Wells TNC. Natural products as starting points for future anti-malarial therapies: going back to our roots? Malar J. 2011;10(1):S3. [9] Yang J, et al. Advances in the research on the targets of anti-malaria actions of artemisinin. Pharmacol Ther. 2020;216: 107697. [10] Institute of Medicine Committee on the Economics of Antimalarial D. In Arrow KJ, Panosian C, Gelband H, editors. Saving lives, buying time: economics of malaria drugs in an age of resistance. National Academies Press (US); 2004. Copyright 2004 by the National Academy of Sciences. All rights reserved.: Washington (DC). [11] Milliken W, et al. Plants used traditionally as antimalarials in Latin America: mining the tree of life for potential new medicines. J Ethnopharmacol. 2021;279: 114221. [12] Christenhusz MJ, Byng JW. The number of known plants species in the world and its annual increase. Phytotaxa. 2016;261(3):201-17. [13] Douwes E, et al. Regression analyses of southern African ethnomedicinal plants: informing the targeted selection of bioprospecting and pharmacological screening subjects. J Ethnopharmacol. 2008;119(3):356-64. [14] Holzmeyer L, et al. Evaluation of plant sources for antiinfective lead compound discovery by correlating phylogenetic, spatial, and bioactivity data. Proc Natl Acad Sci. 2020;117(22):12444-51. [15] Zhu F, et al. Clustered patterns of species origins of nature-derived drugs and clues for future bioprospecting. Proc Natl Acad Sci. 2011;108(31):12943-8. [16] Rønsted N, et al. Phylogenetic selection of Narcissus species for drug discovery. Biochem Syst Ecol. 2008;36(5-6):417-22. [17] Mawalagedera SM, et al. Combining evolutionary inference and metabolomics to identify plants with medicinal potential. Front Ecol Evol. 2019;7:267. [18] Prasad MA, Zolnik CP, Molina J. Leveraging phytochemicals: the plant phylogeny predicts sources of novel antibacterial compounds. Fut Sci OA. 2019;5(7):FSO407. [19] Mahajan GB, Balachandran L. Antibacterial agents from actinomycetes—a review. Front Biosci-Elite. 2012;4(1):240-53. [20] Aminov R. History of antimicrobial drug discovery: major classes and health impact. Biochem Pharmacol. 2017;133:4-19. [21] Berkov S, et al. Chemodiversity, chemotaxonomy and chemoecology of Amaryllidaceae alkaloids. Alkaloids Chem Biol. 2020;83:113-85. [22] Li X, et al. What makes species productive of anti-cancer drugs? Clues from drugs’ species origin, druglikeness, target and pathway. Anti-Cancer Agents Med Chem (Formerly Current Medicinal Chemistry-Anti-Cancer Agents). 2019;19(2):194-203. [23] Egieyeh SA, et al. Prioritization of anti-malarial hits from nature: chemo-informatic profiling of natural products with in vitro antiplasmodial activities and currently registered anti-malarial drugs. Malar J. 2016;15:1-23. [24] Schoch CL, et al. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database. 2020. 2020. [25] Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49(W1):W293-6. [26] Borsch T, et al. World Flora Online: placing taxonomists at the heart of a definitive and comprehensive global resource on the world’s plants. Taxon. 2020;69(6):1311-41. [27] Lipinski CA, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46:3-26. [28] Veber DF, et al. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45(12):2615-23. [29] Ghose AK, Viswanadhan VN, Wendoloski JJ. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem. 1999;1(1):55-68. [30] Trauner D, Roßmann K. A conversation with Gerhard Bringmann. ACS Publications; 2020. p. 1248-1252. [31] Charman SA, et al. An in vitro toolbox to accelerate anti-malarial drug discovery and development. Malar J. 2020;19(1):1-27. [32] Kim HW, et al. NPClassifier: a deep neural network-based structural classification tool for natural products. J Nat Prod. 2021;84(11):2795-807. [33] Cihan Sorkun M, et al. ChemPlot, a Python library for chemical space visualization. Chemistry-Methods. 2022;2(7): e202200005. [34] Lianaa D, Rungsihirunrata K. Using phylogeny approach on ethnobotanical bioprospecting for leading antimalarial plant-based drug discovery. [35] Nondo RS, et al. Ethnobotanical survey and in vitro antiplasmodial activity of medicinal plants used to treat malaria in Kagera and Lindi regions, Tanzania. J Med Plants Res. 2015;9(6):179-92. [36] Yetein MH, et al. Ethnobotanical study of medicinal plants used for the treatment of malaria in plateau of Allada, Benin (West Africa). J Ethnopharmacol. 2013;146(1):154-63. [37] Hovlid ML, Winzeler EA. Phenotypic screens in antimalarial drug discovery. Trends Parasitol. 2016;32(9):697-707. [38] O’Neill MJ, et al. Plants as sources of antimalarial drugs, part 4: activity of Brucea javanica fruits against chloroquine-resistant Plasmodium falciparum in vitro and against Plasmodium berghei in vivo. J Nat Prod. 1987;50(1):41-8. [39] Szabó LU, et al. Antiprotozoal nor-triterpene alkaloids from Buxus sempervirens L. Antibiotics. 2021;10(6):696. [40] Pei Y, et al. Quassinoid analogs with enhanced efficacy for treatment of hematologic malignancies target the PI3Kγ isoform. Commun Biol. 2020;3(1):267. [41] Francois G, et al. Naphthylisoquinoline alkaloids against malaria: evaluation of the curative potentials of dioncophylline C and dioncopeltine A against Plasmodium berghei in vivo. Antimicrob Agents Chemother. 1997;41(11):2533-9. [42] Tajuddeen N, et al. The stereoselective total synthesis of axially chiral naphthylisoquinoline alkaloids. Acc Chem Res. 2022;55(17):2370-83. [43] Bringmann G, et al. Synthesis and antiprotozoal activities of simplified analogs of naphthylisoquinoline alkaloids. Eur J Med Chem. 2008;43(1):32-42. [44] Dechering KJ, et al. Replenishing the malaria drug discovery pipeline: screening and hit evaluation of the MMV Hit Generation Library 1 (HGL1) against asexual blood stage Plasmodium falciparum, using a nano luciferase reporter read-out. SLAS Discov. 2022;27(6):337-48. [45] Plouffe D, et al. In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen. Proc Natl Acad Sci. 2008;105(26):9059-64. [46] White J. PubMed 2.0. Medical Reference Services Quarterly. 2020. 39(4): 382-387. [47] Kim S, et al. PubChem substance and compound databases. Nucleic Acids Res. 2016;44(D1):D1202-13. [48] Pence HE, Williams A. ChemSpider: an online chemical information resource. ACS Publications; 2010. [49] Mendelsohn LD. ChemDraw 8 ultra, windows and macintosh versions. J Chem Inf Comput Sci. 2004;44(6):2225-6. [50] Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):42717. |