整合生物学期刊网

应用天然产物 ›› 2014, Vol. 4 ›› Issue (4): 251-255.DOI: 10.1007/s13659-014-0031-5

• Short communication • 上一篇    

Molecular Docking of Bacosides with Tryptophan Hydroxylase: A Model to Understand the Bacosides Mechanism

David Mary Rajathei1, Jayakumar Preethi2, Hemant K. Singh3, Koilmani Emmanuvel Rajan2   

  1. 1. Department of Bioinformtics, Bharathidasan University, Tiruchirappalli 620024, India;
    2. Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India;
    3. Laboratories of CNS Disorder, Learning & Memory, Division of Pharmacology, Central Drug Research Institute, Lucknow 226031, India
  • 收稿日期:2014-05-13 修回日期:2014-06-30 出版日期:2014-08-24 发布日期:2018-02-11
  • 通讯作者: Koilmani Emmanuvel Rajan,e-mail:emmanuvel1972@yahoo.com
  • 基金资助:
    We are grateful to the editor and anonymous referees for their comments that improved the final version of this article.

Molecular Docking of Bacosides with Tryptophan Hydroxylase: A Model to Understand the Bacosides Mechanism

David Mary Rajathei1, Jayakumar Preethi2, Hemant K. Singh3, Koilmani Emmanuvel Rajan2   

  1. 1. Department of Bioinformtics, Bharathidasan University, Tiruchirappalli 620024, India;
    2. Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India;
    3. Laboratories of CNS Disorder, Learning & Memory, Division of Pharmacology, Central Drug Research Institute, Lucknow 226031, India
  • Received:2014-05-13 Revised:2014-06-30 Online:2014-08-24 Published:2018-02-11
  • Supported by:
    We are grateful to the editor and anonymous referees for their comments that improved the final version of this article.

摘要: Tryptophan hydroxylase(TPH) catalyses L-tryptophan into 5-hydroxy-L-tryptophan, which is the first and ratelimiting step of serotonin(5-HT) biosynthesis. Earlier, we found that TPH2 up-regulated in the hippocampus of postnatal rats after the oral treatment of Bacopa monniera leaf extract containing the active compound bacosides. However, the knowledge about the interactions between bacosides with TPH is limited. In this study, we take advantage of in silico approach to understand the interaction of bacoside-TPH complex using three different docking algorithms such as HexDock, PatchDock and AutoDock. All these three algorithms showed that bacoside A and A3 well fit into the cavity consists of active sites. Further, our analysis revealed that major active compounds bacoside A3 and A interact with different residues of TPH through hydrogen bond. Interestingly, Tyr235, Thr265 and Glu317 are the key residues among them, but none of them are either at tryptophan or BH4 binding region. However, its note worthy to mention that Tyr 235 is a catalytic sensitive residue, Thr265 is present in the flexible loop region and Glu317 is known to interacts with Fe. Interactions with these residues may critically regulate TPH function and thus serotonin synthesis. Our study suggested that the interaction of bacosides(A3/A) with TPH might up-regulate its activity to elevate the biosynthesis of 5-HT, thereby enhances learning and memory formation.

关键词: Serotonin, Tryptophan hydroxylase, Bacosides, Docking

Abstract: Tryptophan hydroxylase(TPH) catalyses L-tryptophan into 5-hydroxy-L-tryptophan, which is the first and ratelimiting step of serotonin(5-HT) biosynthesis. Earlier, we found that TPH2 up-regulated in the hippocampus of postnatal rats after the oral treatment of Bacopa monniera leaf extract containing the active compound bacosides. However, the knowledge about the interactions between bacosides with TPH is limited. In this study, we take advantage of in silico approach to understand the interaction of bacoside-TPH complex using three different docking algorithms such as HexDock, PatchDock and AutoDock. All these three algorithms showed that bacoside A and A3 well fit into the cavity consists of active sites. Further, our analysis revealed that major active compounds bacoside A3 and A interact with different residues of TPH through hydrogen bond. Interestingly, Tyr235, Thr265 and Glu317 are the key residues among them, but none of them are either at tryptophan or BH4 binding region. However, its note worthy to mention that Tyr 235 is a catalytic sensitive residue, Thr265 is present in the flexible loop region and Glu317 is known to interacts with Fe. Interactions with these residues may critically regulate TPH function and thus serotonin synthesis. Our study suggested that the interaction of bacosides(A3/A) with TPH might up-regulate its activity to elevate the biosynthesis of 5-HT, thereby enhances learning and memory formation.

Key words: Serotonin, Tryptophan hydroxylase, Bacosides, Docking