1 |
Almeida DRA, Stark SC, Shao G, Schietti J, Nelson BW, Silva CA, Gorgens EB, Valbuena R, Papa DdA, Brancalion PHS. Optimizing the remote detection of tropical rainforest structure with airborne lidar: leaf area profile sensitivity to pulse density and spatial sampling. Remote Sens, 2019, 11: 92,
DOI
|
2 |
Antze B, Koper N. Noisy anthropogenic infrastructure interferes with alarm responses in Savannah sparrows (Passerculus sandwichensis). R Soc Open Sci, 2018, 5: 172168,
DOI
|
3 |
Barber JR, Crooks KR, Fristrup KM. The costs of chronic noise exposure for terrestrial organisms. Trends Ecol Evol, 2010, 25: 180-189,
DOI
|
4 |
Calders K, Newnham G, Burt A, Murphy S, Raumonen P, Herold M, Culvenor D, Avitabile V, Disney M, Armston J. Nondestructive estimates of above-ground biomass using terrestrial laser scanning. Methods Ecol Evol, 2015, 6: 198-208,
DOI
|
5 |
Chen YF, Luo Y, Mammides C, Cao KF, Zhu S, Goodale E. The relationship between acoustic indices, elevation, and vegetation, in a forest plot network of southern China. Ecol Indic, 2021, 129: 107942,
DOI
|
6 |
Cooke SC, Balmford A, Donald PF, Newson SE, Johnston A. Roads as a contributor to landscape-scale variation in bird communities. Nat Commun, 2020, 11: 1-10,
DOI
|
7 |
Damsky J, Gall MD. Anthropogenic noise reduces approach of Black-capped Chickadee (Poecile atricapillus) and Tufted Titmouse (Baeolophus bicolor) to Tufted Titmouse mobbing calls. Condor, 2017, 119: 26-33,
DOI
|
8 |
Deppe JL, Rotenberry JT. Scale-dependent habitat use by fall migratory birds: vegetation structure, floristics, and geography. Ecol Monogr, 2008, 78: 461-487,
DOI
|
9 |
Des Aunay GH, Slabbekoorn H, Nagle L, Passas F, Nicolas P, Draganoiu TI. Urban noise undermines female sexual preferences for low-frequency songs in domestic canaries. Anim Behav, 2014, 87: 67-75,
DOI
|
10 |
Du R, Santi P, Xiao M, Vasilakos AV, Fischione C. The sensable city: a survey on the deployment and management for smart city monitoring. IEEE Commun Surv Tutor, 2019, 21: 1533-1560,
DOI
|
11 |
Estabrook BJ, Ponirakis DW, Clark CW, Rice AN. Widespread spatial and temporal extent of anthropogenic noise across the northeastern Gulf of Mexico shelf ecosystem. Endanger Species Res, 2016, 30: 267-282,
DOI
|
12 |
Farina A, Ceraulo M, Bobryk C, Pieretti N, Quinci E, Lattanzi E. Spatial and temporal variation of bird dawn chorus and successive acoustic morning activity in a Mediterranean landscape. Bioacoustics, 2015, 24: 269-288,
DOI
|
13 |
Forstmeier W, Burger C, Temnow K, Derégnaucourt S. The genetic basis of zebra finch vocalizations. Evolution, 2009, 63: 2114-2130,
DOI
|
14 |
Francis CD, Kleist NJ, Ortega CP, Cruz A. Noise pollution alters ecological services: enhanced pollination and disrupted seed dispersal. Proc R Soc B, 2012, 279: 2727-2735,
DOI
|
15 |
Francomano D, Gottesman BL, Pijanowski BC. Biogeographical and analytical implications of temporal variability in geographically diverse soundscapes. Ecol Indic, 2021, 121: 106794,
DOI
|
16 |
Fuller S, Axel AC, Tucker D, Gage SH. Connecting soundscape to landscape: which acoustic index best describes landscape configuration?. Ecol Indic, 2015, 58: 207-215,
DOI
|
17 |
Gomes DGE, Toth CA, Cole HJ, Francis CD, Barber JR. Phantom rivers filter birds and bats by acoustic niche. Nat Commun, 2021, 12: 1-8,
DOI
|
18 |
Green M, Murphy D. Environmental sound monitoring using machine learning on mobile devices. Appl Acoust, 2020, 159: 107041,
DOI
|
19 |
Halfwerk W, Bot S, Buikx J, van der Velde M, Komdeur J, ten Cate C, Slabbekoorn H. Low-frequency songs lose their potency in noisy urban conditions. Proc Natl Acad Sci USA, 2011, 108: 14549-14554,
DOI
|
20 |
Hao ZZ, Wang C, Sun ZK, Zhao DX, Sun BQ, Wang HJ, van den Bosch CK. Vegetation structure and temporality influence the dominance, diversity, and composition of forest acoustic communities. For Ecol Manag, 2021, 482: 118871,
DOI
|
21 |
Hao ZZ, Zhan HS, Zhang CY, Pei NC, Sun B, He JH, Wu RC, Xu XH, Wang C. Assessing the effect of human activities on biophony in urban forests using an automated acoustic scene classification model. Ecol Indic, 2022, 144: 109437,
DOI
|
22 |
Henry CS, Wells MM. Acoustic niche partitioning in two cryptic sibling species of Chrysoperla green lacewings that must duet before mating. Anim Behav, 2010, 80: 991-1003,
DOI
|
23 |
Hong XC, Wang GY, Liu J, Song L, Wu ETY. Modeling the impact of soundscape drivers on perceived birdsongs in urban forests. J Clean Prod, 2021, 292: 125315,
DOI
|
24 |
Huisman WHT, Attenborough K. Reverberation and attenuation in a pine forest. J Acoust Soc Am, 1991, 90: 2664-2677,
DOI
|
25 |
Kang W, Minor ES, Park CR, Lee D. Effects of habitat structure, human disturbance, and habitat connectivity on urban forest bird communities. Urban Ecosyst, 2015, 18: 857-870,
DOI
|
26 |
Kasten EP, Gage SH, Fox J, Joo W. The remote environmental assessment laboratory’s acoustic library: an archive for studying soundscape ecology. Ecol Inform, 2012, 12: 50-67,
DOI
|
27 |
Kern JM, Radford AN. Anthropogenic noise disrupts use of vocal information about predation risk. Environ Pollut, 2016, 218: 988-995,
DOI
|
28 |
Kociolek A, Clevenger A, St Clair C, Proppe D. Effects of road networks on bird populations. Conserv Biol, 2011, 25: 241-249
|
29 |
Kontsiotis VJ, Valsamidis E, Liordos V. Organization and differentiation of breeding bird communities across a forested to urban landscape. Urban Urban Green, 2019, 38: 242-250,
DOI
|
30 |
Krause BL. The niche hypothesis: a virtual symphony of animal sounds, the origins of musical expression and the health of habitats. Soundsc Newsl, 1993, 6: 6-10
|
31 |
Lahoz-Monfort JJ, Magrath MJL. A comprehensive overview of technologies for species and habitat monitoring and conservation. Bioscience, 2021, 71: 1038-1062,
DOI
|
32 |
Lai JS, Zou Y, Zhang JL, Peres-Neto PR. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package. Methods Ecol Evol, 2022, 13: 782-788,
DOI
|
33 |
Martinez-Sala R, Rubio C, Garcia-Raffi LM, Sanchez-Perez JV, Sanchez-Perez EA, Llinares J. Control of noise by trees arranged like sonic crystals. J Sound Vib, 2006, 291: 100-106,
DOI
|
34 |
Mitchell SL, Bicknell JE, Edwards DP, Deere NJ, Bernard H, Davies ZG, Struebig MJ. Spatial replication and habitat context matters for assessments of tropical biodiversity using acoustic indices. Ecol Indic, 2020, 119: 106717,
DOI
|
35 |
Morton ES. Ecological sources of selection on avian sounds. Am Nat, 1975, 109: 17-34,
DOI
|
36 |
Mullet TC, Farina A, Gage SH. The acoustic habitat hypothesis: an ecoacoustics perspective on species habitat selection. Biosemiotics, 2017, 10: 319-336,
DOI
|
37 |
Nemeth E, Brumm H. Birds and anthropogenic noise: Are urban songs adaptive?. Am Nat, 2010, 176: 465-475,
DOI
|
38 |
Nemeth E, Dabelsteen T, Pedersen SB, Winkler H. Rainforests as concert halls for birds: are reverberations improving sound transmission of long song elements?. J Acoust Soc Am, 2006, 119: 620-626,
DOI
|
39 |
Nemeth E, Pieretti N, Zollinger SA, Geberzahn N, Partecke J, Miranda AC, Brumm H. Bird song and anthropogenic noise: Vocal constraints may explain why birds sing higher-frequency songs in cities. Proc R Soc Lond B Biol Sci, 2013, 280: 20122798
|
40 |
Newnham GJ, Armston JD, Calders K, Disney MI, Lovell JL, Schaaf CB, Strahler AH, Danson FM. Terrestrial laser scanning for plot-scale forest measurement. Curr For Rep, 2015, 1: 239-251,
DOI
|
41 |
Ow LF, Ghosh S. Urban cities and road traffic noise: Reduction through vegetation. Appl Acoust, 2017, 120: 15-20,
DOI
|
42 |
Pekin BK, Jung J, Villanueva-Rivera LJ, Pijanowski BC, Ahumada JA. Modeling acoustic diversity using soundscape recordings and LIDAR-derived metrics of vertical forest structure in a neotropical rainforest. Landsc Ecol, 2012, 27: 1513-1522,
DOI
|
43 |
Proppe DS, Sturdy CB, St Clair CC. Anthropogenic noise decreases urban songbird diversity and may contribute to homogenization. Glob Change Biol, 2013, 19: 1075-1084,
DOI
|
44 |
Raumonen P, Kaasalainen M, Åkerblom M, Kaasalainen S, Kaartinen H, Vastaranta M, Holopainen M, Disney M, Lewis P. Fast automatic precision tree models from terrestrial laser scanner data. Remote Sens, 2013, 5: 491-520,
DOI
|
45 |
Richards DG, Wiley RH. Reverberations and amplitude fluctuations in the propagation of sound in a forest: implications for animal communication. Am Nat, 1980, 115: 381-399,
DOI
|
46 |
Roe P, Eichinski P, Fuller RA, McDonald PG, Schwarzkopf L, Towsey M, Truskinger A, Tucker D, Watson DM. The australian acoustic observatory. Methods Ecol Evol, 2021, 12: 1802-1808,
DOI
|
47 |
Senzaki M, Barber JR, Phillips JN, Carter NH, Cooper CB, Ditmer MA, Fristrup KM, McClure CJW, Mennitt DJ, Tyrrell LP, Vukomanovic J, Wilson AA, Francis CD. Sensory pollutants alter bird phenology and fitness across a continent. Nature, 2020, 587: 605-609,
DOI
|
48 |
Sethi SS, Jones NS, Fulcher B, Picinali L, Clink DJ, Klinck H, Orme CDL, Wrege PH, Ewers RM. Characterizing soundscapes across diverse ecosystems using a universal acoustic feature set. Proc Natl Acad Sci USA, 2020, 117: 17049-17055,
DOI
|
49 |
Shannon G, McKenna MF, Angeloni LM, Crooks KR, Fristrup KM, Brown E, Warner KA, Nelson MD, White C, Briggs J. A synthesis of two decades of research documenting the effects of noise on wildlife. Biol Rev, 2016, 91: 982-1005,
DOI
|
50 |
Siemers BM, Schaub A. Hunting at the highway: traffic noise reduces foraging efficiency in acoustic predators. Proc R Soc B Biol Sci, 2011, 278: 1646-1652,
DOI
|
51 |
Slabbekoorn H. Songs of the city: noise-dependent spectral plasticity in the acoustic phenotype of urban birds. Anim Behav, 2013, 85: 1089-1099,
DOI
|
52 |
Slabbekoorn H, Ellers J, Smith TB. Birdsong and sound transmission: The benefits of reverberations. Condor, 2002, 104: 564-573,
DOI
|
53 |
Slabbekoorn H, Ripmeester EAP. Birdsong and anthropogenic noise: Implications and applications for conservation. Mol Ecol, 2008, 17: 72-83,
DOI
|
54 |
Slabbekoorn H, Yeh P, Hunt K. Sound transmission and song divergence: a comparison of urban and forest acoustics. Condor, 2007, 109: 67-78,
DOI
|
55 |
Sueur J, Aubin T, Simonis C. Seewave, a free modular tool for sound analysis and synthesis. Bioacoustics, 2008, 18: 213-226,
DOI
|
56 |
Tarrero AI, Martin MA, Gonzalez J, Machimbarrena M, Jacobsen F. Sound propagation in forests: A comparison of experimental results and values predicted by the Nord 2000 model. Appl Acoust, 2008, 69: 662-671,
DOI
|
57 |
To AWY, Dingle C, Collins SA. Multiple constraints on urban bird communication: Both abiotic and biotic noise shape songs in cities. Behav Ecol, 2021, 32: 1042-1053,
DOI
|
58 |
Ulloa JS, Haupert S, Latorre JF, Aubin T, Sueur J. scikit-maad: an open-source and modular toolbox for quantitative soundscape analysis in Python. Methods Ecol Evol, 2021, 12: 2334-2340,
DOI
|
59 |
van Renterghem T, Attenborough K, Maennel M, Defrance J, Horoshenkov K, Kang J, Bashir I, Taherzadeh S, Altreuther B, Khan A, Smyrnova Y, Yang HS. Measured light vehicle noise reduction by hedges. Appl Acoust, 2014, 78: 19-27,
DOI
|
60 |
Velez A, Gall MD, Fu JN, Lucas JR. Song structure, not high-frequency song content, determines high-frequency auditory sensitivity in nine species of New World sparrows (Passeriformes: Emberizidae). Funct Ecol, 2015, 29: 487-497,
DOI
|
61 |
Villanueva-Rivera LJ, Pijanowski BC, Villanueva-Rivera MLJ (2018) Package ‘soundecology’. R package version 1:3
|