1 |
Abraham ST, Zaya DN, Koenig WD, Ashley MV. Interspecific and intraspecific pollination patterns of Valley Oak, Quercus lobata, in a mixed stand in Coastal Central California. Int J Plant Sci, 2011, 172(5): 691-699,
DOI
|
2 |
Altintaş DU, Karakoç GB, Yilmaz M, Pinar M, Kendirli SG, Çakan H. Relationship between pollen counts and weather variables in East-Mediterranean Coast of Turkey. Clin Dev Immunol, 2004, 11: 87-96,
DOI
|
3 |
Arroyo MTK, Dudley LS, Jespersen G, Pacheco DA, Cavieres LA. Temperature-driven flower longevity in a high-alpine species of Oxalis influences reproductive assurance. New Phytol, 2013, 200(4): 1260-1268,
DOI
|
4 |
Ashley MV. Answers blowing in the Wind: A quarter century of genetic studies of pollination in oaks. Forests, 2021, 12(5): 575,
DOI
|
5 |
Ashman TL, Knight TM, Steets JA, Amarasekare P, Burd M, Campbell DR, Dudash MR, Johnston MO, Mazer SJ, Mitchell RJ. Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology, 2004, 85(9): 2408-2421,
DOI
|
6 |
|
7 |
Boavida LC, Silva JP, Feijó JA. Sexual reproduction in the cork oak (Quercus suber L) II. Crossing intra- and interspecific barriers. Sex Plant Reprod, 2001, 14: 143-152,
DOI
|
8 |
Bogdziewicz M, Szymkowiak J, Bonal R, Hacket-Pain A, Espelta JM, Pesendorfer M, Grewling L, Kasprzyk I, Belmonte J, Kluska K, De Linares C, Penuelas J, Fernandez-Martinez M. What drives phenological synchrony? Warm springs advance and desynchronize flowering in oaks. Agric for Meteorol, 2020, 294,
DOI
|
9 |
Bogdziewicz M, Kelly D, Tanentzap AJ, Thomas P, Foest J, Lageard J, Hacket-Pain A. Reproductive collapse in European beech results from declining pollination efficiency in large trees. Glob Change Biol, 2023, 29: 4595-4604,
DOI
|
10 |
Brockerhoff EG, Jactel H, Parrotta JA, Ferraz SFB. Role of eucalypt and other planted forests in biodiversity conservation and the provision of biodiversity-related ecosystem services. For Ecol Manag, 2013, 301: 43-50,
DOI
|
11 |
Buiteveld J, Bakker EG, Bovenschenl J. Paternity analysis in a seed orchard of Quercus robur L. and estimation of the amount of background pollination using microsatellite markers. Forest Genet, 2001, 8(4): 331-337,
DOI
|
12 |
Buschbom J, Yanbaev Y, Degen B. Efficient long-distance gene flow into an isolated relict oak stand. J Hered, 2011, 102(4): 464-472,
DOI
|
13 |
Clot B. Trends in airborne pollen: an overview of 21 years of data in Neuchâtel (Switzerland). Aerobiologia, 2003, 19: 227-234,
DOI
|
14 |
Craft KJ, Ashley MV. Pollen-mediated gene flow in isolated and continuous stands of bur oak, Quercus macrocarpa (Fagaceae). Am J Bot, 2010, 97(12): 1999-2006,
DOI
|
15 |
Craft KJ, Brown JS, Golubski AJ, Ashley MV. A model for polyandry in oaks via female choice: a rigged lottery. Evol Ecol Res, 2009, 11(3): 471-481
|
16 |
Crone EE, Lesica P. Pollen and water limitation in Astragalus scaphoides, a plant that flowers in alternate years. Oecologia, 2006, 150(1): 40-49,
DOI
|
17 |
Crone EE, Miller E, Sala A. How do plants know when other plants are flowering? Resource depletion, pollen limitation and mast-seeding in a perennial wildflower. Ecol Lett, 2009, 12(11): 1119-1126,
DOI
|
18 |
Culley TM, Weller SG, Sakai AK. The evolution of wind pollination in angiosperms. Trends Ecol Evol, 2002, 17(8): 361-369,
DOI
|
19 |
Dow BD, Ashley MV. High levels of gene flow in bur oak revealed by paternity analysis using microsatellites. J Hered, 1998, 89(1): 62-70,
DOI
|
20 |
Dow BD, Ashley MV. Factors influencing male mating success in bur oak, Quercus macrocarpa. New for, 1998, 15: 161-180,
DOI
|
21 |
Fleurot E, Lobry JR, Boulanger V, Debias F, Mermet-Bouvier C, Caignard T, Delzon S, Bel-Venner MC, Venner S. Oak masting drivers vary between populations depending on their climatic environments. Curr Biol, 2023, 33(6): 1117-1124,
DOI
|
22 |
|
23 |
Friedman J, Barrett SCH. Wind of change: new insights on the ecology and evolution of pollination and mating in wind-pollinated plants. Ann Bot, 2009, 103(9): 1515-1527,
DOI
|
24 |
Geburek T, Hiess K, Litschauer R, Milasowszky N. Temporal pollen pattern in temperate trees: expedience or fate?. Oikos, 2012, 121(10): 1603-1612,
DOI
|
25 |
Gehrig R. The influence of the hot and dry summer 2003 on the pollen season in Switzerland. Aerobiologia, 2006, 22: 27-34,
DOI
|
26 |
Hamrick JL. Response of forest trees to global environmental changes. For Ecol Manag, 2004, 197(1–3): 323-335,
DOI
|
27 |
Han Q, Kabeya D, Iio A, Inagaki Y, Kakubari Y. Nitrogen storage dynamics are affected by masting events in Fagus crenata. Oecologia, 2014, 174(3): 679-687,
DOI
|
28 |
|
29 |
Havens K, Delph LF. Differential seed maturation uncouples fertilization and siring success in Oenothera organensis (Onagraceae). Heredity, 1996, 76: 623-632,
DOI
|
30 |
Hoch G, Siegwolf RT, Keel SG, Körner C, Han Q. Fruit production in three masting tree species does not rely on stored carbon reserves. Oecologia, 2013, 171: 653-662,
DOI
|
31 |
Kalinganire A. Floral structure, stigma receptivity and pollen viability in relation to protandry and self-incompatibility in Silky Oak (Grevillea robusta A. Cunn.). Ann Bot, 2000, 86(1): 133-148,
DOI
|
32 |
Kelly D, Hart DE, Allen RB. Evaluating the wind pollination benefits of mast seeding. Ecology, 2001, 82(1): 117-126,
DOI
|
33 |
Kirby KJ, Bazely DR, Goldberg EA, Hall JE, Isted R, Perry SC, Thomas RC. Changes in the tree and shrub layer of Wytham Woods (Southern England) 1974–2012: local and national trends compared. Forestry, 2014, 87(5): 663-673,
DOI
|
34 |
Knapp EE, Goedde MA, Rice KJ. Pollen-limited reproduction in blue oak: implications for wind pollination in fragmented populations. Oecologia, 2001, 128(1): 48-55,
DOI
|
35 |
Knight TM, Steets JA, Ashman TL. A quantitative synthesis of pollen supplementation experiments highlights the contribution of resource reallocation to estimates of pollen limitation. Am J Bot, 2006, 93(2): 271-277,
DOI
|
36 |
Koenig WD, Knops JMH. The mystery of masting in trees: Some trees reproduce synchronously over large areas, with widespread ecological effects, but how and why?. Am Sci, 2005, 93(4): 340-347,
DOI
|
37 |
Koenig WD, Knops JMH, Carmen WJ, Pearse IS. What drives masting?. The Phenol Synchrony Hypothesis Ecol, 2015, 96(1): 184-192,
DOI
|
38 |
Kremer A, Hipp AL. Oaks: an evolutionary success story. New Phytol, 2020, 226(4): 987-1011,
DOI
|
39 |
Leimu R, Mutikainen PIA, Koricheva J, Fischer M. How general are positive relationships between plant population size, fitness and genetic variation?. J Ecol, 2006, 94(5): 942-952,
DOI
|
40 |
|
41 |
Loveless MD, Hamrick JL. Ecological determinants of genetic structure in plant populations. Annu Rev Ecol Syst, 1984, 15: 65-95,
DOI
|
42 |
Mitchell RJ, Bellamy PE, Ellis CJ, Hewison RL, Hodgetts NG, Iason GR, Littlewood NA, Newey S, Stockan JA, Taylor AFS. OakEcol: A database of oak-associated biodiversity within the UK. Data Brief, 2019, 25,
DOI
|
43 |
Moracho E, Moreno G, Jordano P, Hampe A. Unusually limited pollen dispersal and connectivity of Pedunculate oak (Quercus robur) refugial populations at the species’ southern range margin. Mol Ecol, 2016, 25(14): 3319-3331,
DOI
|
44 |
Oyama K, Herrera-Arroyo ML, Rocha-Ramírez V, Benítez-Malvido J, Ruiz-Sánchez E, González-Rodríguez A. Gene flow interruption in a recently human-modified landscape: The value of isolated trees for the maintenance of genetic diversity in a Mexican endemic red oak. For Ecol Manag, 2017, 390: 27-35,
DOI
|
45 |
Pearse IS, Koenig WD, Funk KA, Pesendorfer MB. Pollen limitation and flower abortion in a wind-pollinated, masting tree. Ecology, 2015, 96(2): 587-593,
DOI
|
46 |
Pearse IS, Koenig WD, Kelly D. Mechanisms of mast seeding: resources, weather, cues, and selection. New Phytol, 2016, 212(3): 546-562,
DOI
|
47 |
R Core Team (2021) R: A language and environment for statistical computing. Version 4.1.1 R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ [accessed on 09.05.2024]
|
48 |
|
49 |
Satake A, Iwasa Y. Pollen coupling of forest trees: Forming synchronized and periodic reproduction out of Chaos. J Theor Biol, 2000, 203(2): 63-84,
DOI
|
50 |
Schermer É, Bel-Venner M, Fouchet D, Siberchicot A, Boulanger V, Caignard T, Thibaudon M, Oliver G, Nicolas M, Gaillard J, Delzon S, Venner S. Pollen limitation as a main driver of fruiting dynamics in oak populations. Ecol Lett, 2019, 22(1): 98-107,
DOI
|
51 |
Smith CC, Hamrick JL, Kramer CL. The advantage of mast years for wind pollination. Am Nat, 1990, 136(2): 154-166,
DOI
|
52 |
Spieksma FTM, Corden JM, Detandt M, Millington WM, Nikkels H, Nolard N, Schoenmakers CHH, Wachter R, De Weger LA, Willems R. Quantitative trends in annual totals of five common airborne pollen types (Betula, Quercus, Poaceae, Urtica, and Artemisia), at five pollen-monitoring stations in western Europe. Aerobiologia, 2003, 19: 171-184,
DOI
|
53 |
Stairs GR. Microsporogenesis and embryogenesis in Quercus. Bot Gaz, 1964, 125(2): 115-121,
DOI
|
54 |
Stephenson AG. Flower and fruit abortion: proximate causes and ultimate functions. Annu Rev Ecol Syst, 1981, 12(1): 253-279,
DOI
|
55 |
Streiff R, Ducousso A, Lexer C, Steinkellner H, Gloessl J, Kremer A. Pollen dispersal inferred from paternity analysis in a mixed oak stand of Quercus robur L. and Q. petraea (Matt) Liebl. Mol Ecol, 1999, 8(5): 831-841,
DOI
|
56 |
Thompson ID, Okabe K, Parrotta JA, Brockerhoff E, Jactel H, Forrester DI, Taki H. Biodiversity and ecosystem services: lessons from nature to improve management of planted forests for REDD-plus. Biodivers Conserv, 2014, 23: 2613-2635,
DOI
|
57 |
Thomson JD. Using pollination deficits to infer pollinator declines: can theory guide us?. Conserv Ecol, 2001, 5(1): 1-8
|
58 |
Tsuruta M, Kato S, Mukai Y. Timing of premature acorn abortion in Quercus serrata Thunb is related to mating pattern, fruit size, and internal fruit development. J for Res, 2011, 16(6): 492-499,
DOI
|
59 |
van Doorn WG. Effects of pollination on floral attraction and longevity. J Exp Bot, 1997, 48(9): 1615-1622,
DOI
|
60 |
Venner S, Siberchicot A, Pélisson PF, Schermer E, Bel-Venner MC, Nicolas M, Débias F, Miele V, Sauzet S, Boulanger V. Fruiting strategies of perennial plants: a resource budget model to couple mast seeding to pollination efficiency and resource allocation strategies. Am Nat, 2016, 188(1): 66-75,
DOI
|
61 |
Vranckx G, Mergeay J, Cox K, Muys B, Jacquemyn H, Honnay O. Tree density and population size affect pollen flow and mating patterns in small fragmented forest stands of pedunculate oak (Quercus robur L.). For Ecol Manag, 2014, 328: 254-261,
DOI
|
62 |
Yacine A, Bouras F. Self- and cross-pollination effects on pollen tube growth and seed set in holm oak Quercus ilex L. (Fagaceae). Ann for Sci, 1997, 54(5): 447-462,
DOI
|