1 |
Ainsworth EA, Long SP. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol, 2005, 165: 351-372,
DOI
|
2 |
Ainsworth EA, Long SP. 30 years of free-air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation?. Global Change Biol, 2021, 27: 27-49,
DOI
|
3 |
Akaike H (1998) Information theory and an extension of the maximum likelihood principle. In: Parzen E, Tanabe K, Kitagawa G (eds) Selected Papers of Hirotugu Akaike. Springer, pp 199–213.
|
4 |
Alam SM. Pessaraki M. Nutrient uptake by plants under stress conditions. Handbook of Plant and Crop Stress, 1999 New York Marcel Dekker 285-314
|
5 |
Allen RB, Millard P, Richardson SJ (2017) A Resource Centric View of Climate and Mast Seeding in Trees. In: Cánovas FM, Lüttge U, Matyssek R (eds.), Progress in Botany. Vol. 79. Springer International Publishing, Cham, pp 233–268. https://doi.org/10.1007/124_2017_8
|
6 |
Askeyev O, Tishin D, Sparks T, Askeyev I. The effect of climate on the phenology, acorn crop and radial increment of pedunculate oak (Quercus robur) in the middle Volga region, Tatarstan, Russia. Int J Biometeorol, 2005, 49: 262-266,
DOI
|
7 |
Boavida LC, Silva JP, Feijó JA. Sexual reproduction in the cork oak (Quercus suber L.). II. Crossing intra-and interspecific barriers. Sex Plant Reprod, 2001, 14: 143-152,
DOI
|
8 |
Bogdziewicz M, Szymkowiak J, Fernandez-Martinez M, Penuelas J, Espelta JM. The effects of local climate on the correlation between weather and seed production differ in two species with contrasting masting habit. Agric for Meteorol, 2019, 268: 109-115,
DOI
|
9 |
Bogdziewicz M, Kelly D, Thomas PA, Lageard JG, Hacket-Pain A. Climate warming disrupts mast seeding and its fitness benefits in European beech. Nat Plants, 2020, 6: 88-94,
DOI
|
10 |
|
11 |
Bradwell AR (2022) Norbury Park: An estate tackling climate change. Norbury Park Estate. ISBN: 978-1-5272-9734-0. Available from office@harbourneoffice.co.uk
|
12 |
Brienen RJW, Caldwell L, Duchesne L, Voelker S, Barichivich J, Baliva M, Ceccantini G, Di Filippo A, Helama S, Locosselli GM, Lopez L, Piovesan G, Scöngart J, Villalba R, Gloor E. Forest carbon sink neutralized by pervasive growth-lifespan trade-offs. Nat Commun, 2020, 11: 4241,
DOI
|
13 |
Büntgen U, Krusic PJ, Piermattei A, Coomes DA, Esper J, Myglan VS, Kirdyanov AV, Camarero JJ, Crivellaro A, Körner C. Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nat Commun, 2019, 10: 2171,
DOI
|
14 |
Canelo T, Gaytán Á, González-Bornay G, Bonal R. Seed loss before seed predation: experimental evidence of the negative effects of leaf feeding insects on acorn production. Integr Zool, 2018, 13: 238-250,
DOI
|
15 |
Darbah JNT, Kubiske ME, Nelson N, Oksanen E, Vapaavuori E, Karnosky DF. Effects of decadal exposure to interacting elevated CO2 and/or O3 on paper birch (Betula papyrifera) reproduction. Environ Pollut, 2008, 155: 446-452,
DOI
|
16 |
De Graaff MA, Van Groenigen KJ, Six J, Hungate B, van Kessel C. Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Global Change Biol, 2006, 12: 2077-2091,
DOI
|
17 |
Dickson R, Tomlinson P. Oak growth, development and carbon metabolism in response to water stress. Ann for Sci, 1996, 53: 181-196,
DOI
|
18 |
US DOE (2020) US Department of energy free-air CO 2 enrichment experiments: FACE results, lessons, and legacy. DOE/SC–0202. U.S. Department of Energy Office of Science. https://doi.org/10.2172/1615612.
|
19 |
Drake BG, Gonzàlez-Meler MA, Long SP. More efficient plants: a consequence of rising atmospheric CO2?. Annu Rev Plant Physiol Plant Mol Biol, 1997, 48: 609-639,
DOI
|
20 |
Espelta JM, Cortés P, Molowny-Horas R, Sánchez-Humanes B, Retana J. Masting mediated by summer drought reduces acorn predation in mediterranean oak forests. Ecology, 2008, 89: 805-817,
DOI
|
21 |
Flannigan MD, Stocks BJ, Wotton BM. Climate change and forest fires. Sci Tot Environ, 2000, 262: 221-229,
DOI
|
22 |
Fleurot E, Lobry JR, Boulanger V, Debias F, Mermet-Bouvier C, Caignard T, Delzon S, Bel-Venner MC, Venner S. Oak masting drivers vary between populations depending on their climatic environments. Curr Biol, 2023, 33: 1117-1124.e4,
DOI
|
23 |
Gardner A, Ellsworth DS, Crous KY, Pritchard J, MacKenzie AR. Is photosynthetic enhancement sustained through three years of elevated CO2 exposure in 175-year-old Quercus robur?. Tree Physiol, 2022, 42: 130-144,
DOI
|
24 |
Gardner A, Ellsworth DS, Pritchard J, MacKenzie AR. Are chlorophyll concentrations and nitrogen across the vertical canopy profile affected by elevated CO2 in mature Quercus trees?. Trees, 2022, 36: 1797-1809,
DOI
|
25 |
Gardner A, Jiang M, Ellsworth DS, MacKenzie AR, Pritchard J, Bader MKF, Barton C, Bernacchi C, Calfapietra C, Crous KY, Dusenge ME, Gimeno TE, Hall M, Lamba S, Leuzinger S, Uddling J, Warren J, Wallin G, Medlyn BE. Optimal stomatal theory predicts CO2 responses of stomatal conductance in both gymnosperm and angiosperm trees. New Phytol, 2022, 237(4): 1229-1241,
DOI
|
26 |
Gómez JM. Bigger is not always better: conflicting selective pressures on seed size in Quercus ilex. Evolution, 2004, 58: 71-80,
DOI
|
27 |
Hacket-Pain A. Masting. Curr Biol, 2021, 31: R884-R885,
DOI
|
28 |
Hall MC, Stiling P, Moon DC, Drake BG, Hunter MD. Effects of elevated CO2 on foliar quality and herbivore damage in a scrub oak ecosystem. J Chem Ecol, 2005, 31: 267-286,
DOI
|
29 |
Hart KM, Curioni G, Blaen P, Harper NJ, Miles P, Lewin K, Nagy J, Bannister EJ, Cai XM, Thomas RM, Krause S, Tausz M, MacKenzie AR. Characteristics of free air carbon dioxide enrichment of a northern temperate mature forest. Global Change Biol, 2019, 26: 1023-1037,
DOI
|
30 |
Hendrey GR, Ellsworth DS, Lewin KF, Nagy J. A free-air enrichment system for exposing tall forest vegetation to elevated atmospheric CO2. Global Change Biol, 1999, 5: 293-309,
DOI
|
31 |
Hoch G, Siegwolf RT, Keel SG, Körner C, Han Q. Fruit production in three masting tree species does not rely on stored carbon reserves. Oecol, 2013, 171: 653-662,
DOI
|
32 |
Ibáñez I, Clark JS, Dietze MC, Feeley K, Hersh M, LaDeau S, McBride A, Welch NE, Wolosin MS. Predicting biodiversity change: Outside the climate envelope, beyond the species–area curve. Ecology, 2006, 87: 1896-1906,
DOI
|
33 |
IPCC (2023) Summary for Policymakers. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 1–34, https://doi.org/10.59327/IPCC/AR6-9789291691647.001
|
34 |
Isagi Y, Sugimura K, Sumida A, Ito H. How does masting happen and synchronize?. J Theor Biol, 1997, 187: 231-239,
DOI
|
35 |
Jablonski LM, Wang X, Curtis PS. Plant reproduction under elevated CO2 conditions: a meta-analysis of reports on 79 crop and wild species. New Phytol, 2002, 156: 9-26,
DOI
|
36 |
Kampichler C, Teschner M, Klein S, Körner C. Effects of 4 years of CO2 enrichment on the abundance of leaf-galls and leaf-mines in mature oaks. Acta Oecol, 2008, 34: 139-146,
DOI
|
37 |
Kelly D. The evolutionary ecology of mast seeding. Trends Ecol Evol, 1994, 9: 465-470,
DOI
|
38 |
Khaine I, Woo SY. An overview of interrelationship between climate change and forests. For Sci Technol, 2015, 11: 11-18,
DOI
|
39 |
Kimball BA, Kobayashi K, Bindi M. Responses of agricultural crops to free-air CO2 enrichment. Adv Agron, 2002, 77: 293-368,
DOI
|
40 |
Koenig WD, Knops JMH (2005) The mystery of masting in trees: Some trees reproduce synchronously over large areas, with widespread ecological effects, but how and why? Am Sci 93:340–347. http://www.jstor.com/stable/27858609
|
41 |
Komatsu H, Katayama A, Hirose S, Kume A, Higashi N, Ogawa S, Otsuki K. Reduction in soil water availability and tree transpiration in a forest with pedestrian trampling. AgricFor Meteorol, 2007, 146: 107-114,
DOI
|
42 |
LaDeau SL, Clark JS. Rising CO2 levels and the fecundity of forest trees. Science, 2001, 292: 95-98,
DOI
|
43 |
Langsrud Ø. ANOVA for unbalanced data: Use Type II instead of Type III sums of square. Stat Comput, 2003, 13: 163-167,
DOI
|
44 |
Long SP, Ainsworth EA, Rogers A, Ort DR. Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol, 2004, 55: 591-628,
DOI
|
45 |
MacKenzie AR, Krause S, Hart KM, Thomas RM, Blaen PJ, Hamilton RL, Curioni G, Quick SE, Kourmouli A, Hannah DM, Comer-Warner SA, Brekenfeld N, Ullah S, Press MC. BIFoR FACE: water–soil–vegetation–atmosphere data from a temperate deciduous forest catchment, including under elevated CO2. Hydrolo Process, 2021, 35: e14096,
DOI
|
46 |
Martínez-Baroja L, Pérez-Camacho L, Villar-Salvador P, Rebollo S, Quiles P, Gómez-Sánchez D, Molina-Morales M, Leverkus AB, Castro J, Rey-Benayas JM. Massive and effective acorn dispersal into agroforestry systems by an overlooked vector, the Eurasian magpie (Pica pica). Ecosphere, 2019, 10: e02989,
DOI
|
47 |
Mayoral C, Ioni S, Luna E, Crowley L, Hayward S, Sadler JP, Mackenzie AR. Elevated CO2 does not improve seedling performance in a naturally regenerated oak woodland exposed to biotic stressors. Front for Glob Change, 2023, 6: 1278409,
DOI
|
48 |
Obeso JR. The costs of reproduction in plants. New Phytol, 2002, 155: 321-348,
DOI
|
49 |
Palacio S, Hoch G, Sala A, Körner C, Millard P. Does carbon storage limit tree growth?. New Phytol, 2014, 201: 1096-1100,
DOI
|
50 |
Pau S, Okamoto DK, Calderón O, Wright SJ. Long-term increases in tropical flowering activity across growth forms in response to rising CO2 and climate change. Global Change Biol, 2018, 24: 2105-2116,
DOI
|
51 |
Pearse IS, Koenig WD, Kelly D. Mechanisms of mast seeding: resources, weather, cues, and selection. New Phytol, 2016, 212: 546-562,
DOI
|
52 |
Poorter H, Navas ML. Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytol, 2003, 157: 175-198,
DOI
|
53 |
Pritchard SG, Rogers HH, Prior SA, Peterson CM. Elevated CO2 and plant structure: a review. Global Change Biol, 1999, 5: 807-837,
DOI
|
54 |
R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
|
55 |
Roberts AJ, Crowley LM, Sadler JP, Nguyen TT, Gardner AM, Hayward SA, Metcalfe DB. Effects of elevated atmospheric CO2 concentration on insect herbivory and nutrient fluxes in a mature temperate forest. Forests, 2022, 13: 998,
DOI
|
56 |
Ruehr S, Keenan TF, Williams C, Zhou Y, Lu X, Bastos A, Canadell JG, Prentice IC, Sitch S, Terrer C. Evidence and attribution of the enhanced land carbon sink. Nat Rev Earth Environ, 2023, 4: 518-534,
DOI
|
57 |
Sever K, Bogdan S, Škvorc Ž. Response of photosynthesis, growth, and acorn mass of pedunculate oak to different levels of nitrogen in wet and dry growing seasons. J for Res, 2023, 34: 167-176,
DOI
|
58 |
Skopp J, Jawson MD, Doran JW. Steady-state aerobic microbial activity as a function of soil water content. Soil Sci Soc Am J, 1990, 54: 1619-1625,
DOI
|
59 |
Stiling P, Moon D, Hymus G, Drake B. Differential effects of elevated CO2 on acorn density, weight, germination, and predation among three oak species in a scrub-oak forest. Global Change Biol, 2004, 10: 228-232,
DOI
|
60 |
Sturrock RN, Frankel SJ, Brown AV, Hennon PE, Kliejunas JT, Lewis KJ, Worrall JJ, Woods AJ. Climate change and forest diseases. Plant Pathol, 2011, 60: 133-149,
DOI
|
61 |
Wand SJ, Midgley GF, Jones MH, Curtis PS. Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta-analytic test of current theories and perceptions. Global Change Biol, 1999, 5: 723-741,
DOI
|
62 |
Way DA, Ladeau SL, McCarthy HR, Clark JS, Oren RAM, Finzi AC, Jackson RB. Greater seed production in elevated CO2 is not accompanied by reduced seed quality in Pinus taeda L. Global Change Biol, 2010, 16: 1046-1056,
DOI
|
63 |
Wesołowski T, Rowiński P, Maziarz M. Interannual variation in tree seed production in a primeval temperate forest: Does masting prevail?. Eur J for Res, 2015, 134: 99-112,
DOI
|
64 |
Wheeler TR, Daymond AJ, Morrison JIL, Ellis RH, Hadley P. Acclimation of photosynthesis to elevated CO2 in onion (Allium cepa) grown at a range of temperatures. Ann App Biol, 2004, 144: 103-111,
DOI
|
65 |
Zhu Z, Piao S, Myneni R, Huang M, Zeng Z, Canadell JG, Ciais P, Sitch S, Friedlingstein P, Arneth A, Cao C, Cheng L, Kato E, Koven C, Li Y, Lian X, Liu Y, Liu R, Mao J, Pan Y, Peng S, Peñuelas J, Poulter B, Pugh TAM, Stocker BD, Viovy N, Wang X, Wang Y, Xiao Z, Yang H, Zaehle S, Zeng N. Greening of the Earth and its drivers. Nat Clim Chang, 2016, 6: 791-795,
DOI
|