1 |
Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag, 2010, 259(4): 660-684,
DOI
|
2 |
Andrews CM, D’Amato AW, Fraver S, Palik B, Battaglia MA, Bradford JB. Low stand density moderates growth declines during hot droughts in semi-arid forests. J Appl Ecol, 2020, 57(6): 1089-1102,
DOI
|
3 |
Archambeau J, Ruiz-Benito P, Ratcliffe S, Fréjaville T, Changenet A, Muñoz Castañeda JM, Lehtonen A, Dahlgren J, Zavala MA, Benito Garzón M. Similar patterns of background mortality across Europe are mostly driven by drought in European beech and a combination of drought and competition in Scots pine. Agric for Meteor, 2020, 280: 107772,
DOI
|
4 |
Bai XP, Zhang XL, Li JX, Duan XY, Jin YT, Chen ZJ. Altitudinal disparity in growth of Dahurian larch (Larix gmelinii Rupr.) in response to recent climate change in Northeast China. Sci Total Environ, 2019, 670: 466-477,
DOI
|
5 |
Berner LT, Beck PSA, Bunn AG, Goetz SJ. Plant response to climate change along the forest-tundra ecotone in northeastern Siberia. Glob Chang Biol, 2013, 19(11): 3449-3462,
DOI
|
6 |
Biondi F, Qeadan F. A theory-driven approach to tree-ring standardization: defining the biological trend from expected basal area increment. Tree Ring Res, 2008, 64(2): 81-96,
DOI
|
7 |
Bose AK, Scherrer D, Camarero JJ, Ziche D, Babst F, Bigler C, Bolte A, Dorado-Liñán I, Etzold S, Fonti P, Forrester DI, Gavinet J, Gazol A, de Andrés EG, Karger DN, Lebourgeois F, Lévesque M, Martínez-Sancho E, Menzel A, Neuwirth B, Nicolas M, Sanders TGM, Scharnweber T, Schröder J, Zweifel R, Gessler A, Rigling A. Climate sensitivity and drought seasonality determine post-drought growth recovery of Quercus petraea and Quercus robur in Europe. Sci Total Environ, 2021, 784: 147222,
DOI
|
8 |
Braswell BH, Schimel DS, Linder E, Moore B III. The response of global terrestrial ecosystems to interannual temperature variability. Science, 1997, 278(5339): 870-873,
DOI
|
9 |
Brehaut L, Danby RK. Inconsistent relationships between annual tree ring-widths and satellite-measured NDVI in a mountainous subarctic environment. Ecol Indic, 2018, 91: 698-711,
DOI
|
10 |
Buermann W, Forkel M, O’Sullivan M, Sitch S, Friedlingstein P, Haverd V, Jain AK, Kato E, Kautz M, Lienert S, Lombardozzi D, Nabel JEMS, Tian HQ, Wiltshire AJ, Zhu D, Smith WK, Richardson AD. Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature, 2018, 562(7725): 110-114,
DOI
|
11 |
Bunn AG, Hughes MK, Kirdyanov AV, Losleben M, Shishov VV, Berner LT, Oltchev A, Vaganov EA. Comparing forest measurements from tree rings and a space-based index of vegetation activity in Siberia. Environ Res Lett, 2013, 8(3): 035034,
DOI
|
12 |
Camarero JJ, Franquesa M, Sangüesa-Barreda G. Timing of drought triggers distinct growth responses in holm oak: implications to predict warming-induced forest defoliation and growth decline. Forests, 2015, 6(5): 1576-1597,
DOI
|
13 |
Camarero JJ, Gazol A, Sangüesa-Barreda G, Oliva J, Vicente-Serrano SM. To die or not to die: early warnings of tree dieback in response to a severe drought. J Ecol, 2015, 103(1): 44-57,
DOI
|
14 |
Castagneri D, Petit G, Carrer M. Divergent climate response on hydraulic-related xylem anatomical traits of Picea abies along a 900-m altitudinal gradient. Tree Physiol, 2015, 35(12): 1378-1387,
DOI
|
15 |
Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD. Rapid range shifts of species associated with high levels of climate warming. Science, 2011, 333(6045): 1024-1026,
DOI
|
16 |
Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE. Global convergence in the vulnerability of forests to drought. Nature, 2012, 491(7426): 752-755,
DOI
|
17 |
Ciais P, Reichstein M, Viovy N . Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 2005, 437(7058): 529-533,
DOI
|
18 |
Clark DA. Sources or sinks? The responses of tropical forests to current and future climate and atmospheric composition. Phil Trans R Soc Lond B, 2004, 359(1443): 477-491,
DOI
|
19 |
Cook ER, Kairiukstis LA. Methods of dendrochronology: applications in the environmental science, 1990 Dordrecht Kluwer Academic Publishers 104-123,
DOI
|
20 |
Correa-Díaz A, Silva LCR, Horwath WR, Gómez-Guerrero A, Vargas-Hernández J, Villanueva-Díaz J, Velázquez-Martínez A, Suárez-Espinoza J. Linking remote sensing and dendrochronology to quantify climate-induced shifts in high-elevation forests over space and time. JGR Biogeosciences, 2019, 124(1): 166-183,
DOI
|
21 |
Coulthard BL, Touchan R, Anchukaitis KJ, Meko DM, Sivrikaya F. Tree growth and vegetation activity at the ecosystem-scale in the eastern mediterranean. Environ Res Lett, 2017, 12(8): 084008,
DOI
|
22 |
D’Arrigo RD, Malmstrom CM, Jacoby GC, Los SO, Bunker DE. Correlation between maximum latewood density of annual tree rings and NDVI based estimates of forest productivity. Int J Remote Sens, 2000, 21(11): 2329-2336,
DOI
|
23 |
DeSoto L, Cailleret M, Sterck F . Low growth resilience to drought is related to future mortality risk in trees. Nat Commun, 2020, 11(1): 545,
DOI
|
24 |
Ding C, Liu XN, Huang F, Li Y, Zou XY. Onset of drying and dormancy in relation to water dynamics of semi-arid grasslands from MODIS NDWI. Agric for Meteor, 2017, 234: 22-30,
DOI
|
25 |
Eilmann B, Zweifel R, Buchmann N, Graf Pannatier E, Rigling A. Drought alters timing, quantity, and quality of wood formation in scots pine. J Exp Bot, 2011, 62(8): 2763-2771,
DOI
|
26 |
Esquivel-Muelbert A, Phillips OL, Brienen RJW . Tree mode of death and mortality risk factors across amazon forests. Nat Commun, 2020, 11(1): 5515,
DOI
|
27 |
Fonti P, Heller O, Cherubini P, Rigling A, Arend M. Wood anatomical responses of oak saplings exposed to air warming and soil drought. Plant Biol, 2013, 15(Suppl 1): 210-219,
DOI
|
28 |
Forkel M, Carvalhais N, Rödenbeck C, Keeling R, Heimann M, Thonicke K, Zaehle S, Reichstein M. Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems. Science, 2016, 351(6274): 696-699,
DOI
|
29 |
Forner A, Aranda I, Granier A, Valladares F. Differential impact of the most extreme drought event over the last half century on growth and sap flow in two coexisting Mediterranean trees. Plant Ecol, 2014, 215(7): 703-719,
DOI
|
30 |
Foster AC, Martin PH, Redmond MD. Soil moisture strongly limits Douglas-fir seedling establishment near its upper elevational limit in the southern Rocky Mountains. Can J for Res, 2020, 50(8): 837-842,
DOI
|
31 |
Freeman BG, Song YL, Feeley KJ, Zhu K. Montane species track rising temperatures better in the tropics than in the temperate zone. Ecol Lett, 2021, 24(8): 1697-1708,
DOI
|
32 |
Gao BC. NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ, 1996, 58(3): 257-266,
DOI
|
33 |
Gatti LV, Basso LS, Miller JB, Gloor M, Gatti Domingues L, Cassol HLG, Tejada G, Aragão LEOC, Nobre C, Peters W, Marani L, Arai E, Sanches AH, Corrêa SM, Anderson L, Von Randow C, Correia CSC, Crispim SP, Neves RAL. Amazonia as a carbon source linked to deforestation and climate change. Nature, 2021, 595(7867): 388-393,
DOI
|
34 |
Girardin MP, Hogg EH, Bernier PY, Kurz WA, Guo XJ, Cyr G. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming. Glob Chang Biol, 2016, 22(2): 627-643,
DOI
|
35 |
Gómez-Guerrero A, Correa-Díaz A, Castruita-Esparza LU. Climate change and dynamics of forest ecosystems. Rev Fitotec Mex, 2021, 44(4): 673-682
|
36 |
Han X, An Y, Zhou YY, Liu C, Yin WL, Xia XL. Comparative transcriptome analyses define genes and gene modules differing between two Populus genotypes with contrasting stem growth rates. Biotechnol Biofuels, 2020, 13: 139,
DOI
|
37 |
Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG. High-resolution global maps of 21st-century forest cover change. Science, 2013, 342(6160): 850-853,
DOI
|
38 |
Hember RA, Kurz WA, Coops NC. Relationships between individual-tree mortality and water-balance variables indicate positive trends in water stress-induced tree mortality across North America. Glob Chang Biol, 2017, 23(4): 1691-1710,
DOI
|
39 |
Hogan JA, McMahon SM, Buzzard V, Michaletz ST, Enquist BJ, Thompson J, Swenson NG, Zimmerman JK. Drought and the interannual variability of stem growth in an aseasonal, everwet forest. Biotropica, 2019, 51(2): 139-154,
DOI
|
40 |
Holmes RL. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin, 1983, 43: 69-75,
DOI
|
41 |
Huang MT, Piao SL, Janssens IA, Zhu ZC, Wang T, Wu DH, Ciais P, Myneni RB, Peaucelle M, Peng SS, Yang H, Peñuelas J. Velocity of change in vegetation productivity over northern high latitudes. Nat Ecol Evol, 2017, 1(11): 1649-1654,
DOI
|
42 |
Isaac-Renton M, Montwé D, Hamann A, Spiecker H, Cherubini P, Treydte K. Northern forest tree populations are physiologically maladapted to drought. Nat Commun, 2018, 9(1): 5254,
DOI
|
43 |
Zhu JJ, Fan ZP, Zeng DH, Jiang FQ, Takeshi M. Comparison of stand structure and growth between artificial and natural forests of Pinus sylvestiris var. mongolica on sandy land. J for Res, 2003, 14(2): 103-111,
DOI
|
44 |
Zhu JJ, Kang HZ, Tan H, Xu ML, Wang J. Natural regeneration characteristics of Pinus sylvestris var. mongolica forests on sandy land in Honghuaerji China. J for Res, 2005, 16(4): 253-259,
DOI
|
45 |
Kannenberg SA, Novick KA, Alexander MR, Maxwell JT, Moore DJP, Phillips RP, Anderegg WRL. Linking drought legacy effects across scales: from leaves to tree rings to ecosystems. Glob Chang Biol, 2019, 25(9): 2978-2992,
DOI
|
46 |
Keenan TF, Gray J, Friedl MA, Toomey M, Bohrer G, Hollinger DY, Munger JW, O’Keefe J, Schmid HP, Wing IS, Yang B, Richardson AD. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat Clim Change, 2014, 4: 598-604,
DOI
|
47 |
Kendall MG. Rank Correlation Methods, 1975 London UK Griffin
|
48 |
Li ZS, Keyimu M, Fan ZX, Wang XC. Climate sensitivity of conifer growth doesn’t reveal distinct low–high dipole along the elevation gradient in the wolong national natural reserve. SW China Dendrochronologia, 2020, 61: 125702,
DOI
|
49 |
Li X, Zhang K, Li X. Responses of vegetation growth to climate change over the Tibetan plateau from 1982 to 2018. Environ Res Commun, 2022, 4(4): 045007,
DOI
|
50 |
Liu YY, Wang AY, An YN, Lian PY, Wu DD, Zhu JJ, Meinzer FC, Hao GY. Hydraulics play an important role in causing low growth rate and dieback of aging Pinus sylvestris var. Mongolica trees in plantations of Northeast China. Plant Cell Environ, 2018, 41(7): 1500-1511,
DOI
|
51 |
Luo LH, Ma W, Zhuang YL, Zhang YN, Yi SH, Xu JW, Long YP, Ma D, Zhang ZQ. The impacts of climate change and human activities on alpine vegetation and permafrost in the Qinghai-Tibet engineering corridor. Ecol Indic, 2018, 93: 24-35,
DOI
|
52 |
Maes SL, Perring MP, Vanhellemont M . Environmental drivers interactively affect individual tree growth across temperate European forests. Glob Chang Biol, 2019, 25(1): 201-217,
DOI
|
53 |
Mann HB. Nonparametric tests against trend. Econometrica, 1945, 13(3): 245-259,
DOI
|
54 |
Marchand W, Girardin MP, Hartmann H, Gauthier S, Bergeron Y. Taxonomy, together with ontogeny and growing conditions, drives needleleaf species’ sensitivity to climate in boreal North America. Glob Chang Biol, 2019, 25(8): 2793-2809,
DOI
|
55 |
Marusig D, Petruzzellis F, Tomasella M, Napolitano R, Altobelli A, Nardini A. Correlation of field-measured and remotely sensed plant water status as a tool to monitor the risk of drought-induced forest decline. Forests, 2020, 11(1): 77,
DOI
|
56 |
Mathias JM, Thomas RB. Disentangling the effects of acidic air pollution, atmospheric CO2, and climate change on recent growth of red spruce trees in the Central Appalachian Mountains. Glob Chang Biol, 2018, 24(9): 3938-3953,
DOI
|
57 |
Mohammdy M, Moradi HR, Zeinivand H, Temme AJAM, Pourghasemi HR, Alizadeh H. Validating gap-filling of Landsat ETM+ satellite images in the Golestan Province. Iran Arab J Geosci, 2014, 7(9): 3633-3638,
DOI
|
58 |
Neumann M, Eastaugh CS, Adams MA. Recruitment, mortality and growth in semi-arid conifer-eucalypt forest: small trees insure against fire and drought. J Biogeogr, 2023, 50(2): 291-301,
DOI
|
59 |
Norlen CA, Goulden ML. Recent tree mortality dampens semi-arid forest die-off during subsequent drought. AGU Advances., 2023, 4(3): e2022AV000810,
DOI
|
60 |
Park Williams A, Allen CD, Macalady AK, Griffin D, Woodhouse CA, Meko DM, Swetnam TW, Rauscher SA, Seager R, Grissino-Mayer HD, Dean JS, Cook ER, Gangodagamage C, Cai M, McDowell NG. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat Clim Change, 2013, 3: 292-297,
DOI
|
61 |
Petrucco L, Nardini A, von Arx G, Saurer M, Cherubini P. Isotope signals and anatomical features in tree rings suggest a role for hydraulic strategies in diffuse drought-induced die-back of Pinus nigra. Tree Physiol, 2017, 37(4): 523-535,
DOI
|
62 |
Piao SL, Friedlingstein P, Ciais P, Viovy N, Demarty J. Growing season extension and its impact on terrestrial carbon cycle in the Northern hemisphere over the past 2 decades. Glob Biogeochem Cycles., 2007,
DOI
|
63 |
Rollinson CR, Dawson A, Raiho AM . Forest responses to last-millennium hydroclimate variability are governed by spatial variations in ecosystem sensitivity. Ecol Lett, 2021, 24(3): 498-508,
DOI
|
64 |
Seaton D, Dube T, Mazvimavi D. Use of multi-temporal satellite data for monitoring pool surface areas occurring in non-perennial rivers in semi-arid environments of the Western Cape, South Africa. ISPRS J Photogramm Remote Sens, 2020, 167: 375-384,
DOI
|
65 |
Silva LCR, Anand M. Probing for the influence of atmospheric CO2 and climate change on forest ecosystems across biomes. Glob Ecol Biogeogr, 2013, 22(1): 83-92,
DOI
|
66 |
Song LN, Zhu JJ, Yan QL, Li MC, Yu GQ. Comparison of intrinsic water use efficiency between different aged Pinus sylvestris var. mongolica wide windbreaks in semiarid sandy land of northern China. Agroforestry Syst, 2015, 89: 477-489,
DOI
|
67 |
Song LN, Zhu JJ, Li MC, Zhang JX. Water use patterns of Pinus sylvestris var. mongolica trees of different ages in a semiarid sandy lands of Northeast China. Environ Exp Bot, 2016, 129: 94-107,
DOI
|
68 |
Tei S, Sugimoto A. Time lag and negative responses of forest greenness and tree growth to warming over circumboreal forests. Glob Chang Biol, 2018, 24(9): 4225-4237,
DOI
|
69 |
Tiwari A, Fan ZX, Jump AS, Zhou ZK. Warming induced growth decline of Himalayan birch at its lower range edge in a semi-arid region of Trans-Himalaya, central Nepal. Plant Ecol, 2017, 218(5): 621-633,
DOI
|
70 |
Tucker CJ. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ, 1979, 8(2): 127-150,
DOI
|
71 |
Vernon MJ, Sherriff RL, van Mantgem P, Kane JM. Thinning, tree-growth, and resistance to multi-year drought in a mixed-conifer forest of northern California. For Ecol Manag, 2018, 422: 190-198,
DOI
|
72 |
Walden LL, Fontaine JB, Ruthrof KX . Carbon consequences of drought differ in forests that resprout. Glob Chang Biol, 2019, 25(5): 1653-1664,
DOI
|
73 |
Walker AP, De Kauwe MG, Bastos A . Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytol, 2021, 229(5): 2413-2445,
DOI
|
74 |
Wells N, Goddard S, Hayes MJ. A self-calibrating palmer drought severity index. J Climate, 2004, 17(12): 2335-2351,
DOI
|
75 |
Wigley TML, Briffa KR, Jones PD. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Climate Appl Meteor, 1984, 23(2): 201-213,
DOI
|
76 |
Wilson R, Elling W. Temporal instability in tree-growth/climate response in the lower Bavarian forest region: implications for dendroclimatic reconstruction. Trees, 2004, 18(1): 19-28,
DOI
|
77 |
Zhang YC, Piao SL, Sun Y, Rogers BM, Li XY, Lian X, Liu ZH, Chen AP, Peñuelas J. Future reversal of warming-enhanced vegetation productivity in the Northern hemisphere. Nat Clim Change, 2022, 12: 581-586,
DOI
|
78 |
Zhao HC, Jia GS, Wang HS, Zhang AZ, Xu XY. Seasonal and interannual variations in carbon fluxes in East Asia semi-arid grasslands. Sci Total Environ, 2019, 668: 1128-1138,
DOI
|
79 |
Zhu JJ, Li FQ, Xu ML, Kang HZ, Wu XY. The role of ectomycorrhizal fungi in alleviating pine decline in semiarid sandy soil of Northern China: an experimental approach. Ann for Sci, 2008, 65(3): 304,
DOI
|
80 |
Zimmermann J, Hauck M, Dulamsuren C, Leuschner C. Climate warming-related growth decline affects Fagus sylvatica, but not other broad-leaved tree species in central European mixed forests. Ecosystems, 2015, 18(4): 560-572,
DOI
|