1 |
Adole T, Dash J, Atkinson P. A systematic review of vegetation phenology in Africa. Ecol Inform, 2016,
DOI
|
2 |
Anees A, Olivier JC, O’Rielly M, Aryal J (2013) Detecting beetle infestations in pine forests using MODIS NDVI time-series data 2013 In: IEEE International geoscience and remote sensing symposium—IGARSS, pp 3329–3332. doi https://doi.org/10.1109/IGARSS.2013.6723540
|
3 |
Barka I, Bucha T, Molnár T, Móricz N, Somogyi Z, Koreň M. Suitability of MODIS-based NDVI index for forest monitoring and its seasonal applications in central Europe. Cent Eur for J, 2019, 66: 206-217,
DOI
|
4 |
Bolton DK, Gray JM, Melaas EK, Moon M, Eklundh L, Friedl MA. Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery. Remote Sens Environ, 2020, 240: 16,
DOI
|
5 |
Chen JM, Deng F, Chen MZ. Locally adjusted cubic-spline capping for reconstructing seasonal trajectories of a satellite-derived surface parameter. IEEE Trans Geosci Remote Sens, 2006, 44(8): 2230-2238,
DOI
|
6 |
Deng LZ, Fei K, Sun TY, Zhang LP, Fan XJ, Ni L. Characteristics of run off processes and nitrogen loss via surface flow and interflow from weathered granite slopes of Southeast China. J Mt Sci, 2019, 16: 1048-1064,
DOI
|
7 |
Duan H, Yan C, Tsunekawa A, Song X, Li S, Xie JL. Assessing vegetation dynamics in the three-north shelter forest region of China using AVHRR NDVI data. Environ Earth Sci, 2011, 64: 1011-1020,
DOI
|
8 |
Ebinne E, Apeh O, Ndukwu R, Abah E. Assessing the health of Akamkpa forest reserves in southeastern part of Nigeria using remote sensing techniques. Int J for Res, 2020,
DOI
|
9 |
Elhag M, Boteva S, Al-Amri N. Forest cover assessment using remote-sensing techniques in crete Island Greece. Open Geosci, 2021, 13(1): 345-358,
DOI
|
10 |
Gauthier S, Bernier P, Kuuluvainen T, Shvidenko AZ, Schepaschenko DG. Boreal forest health and global change. Science, 2015, 349: 819-822,
DOI
|
11 |
Gitelson AA, Kaufman YJ, Stark R, Rundquist D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens Environ, 2002, 80: 76-87,
DOI
|
12 |
Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R. Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ, 2017,
DOI
|
13 |
Heumann WB, Seaquist WJ, Eklundh L, Jonsson P. AVHRR derived phenological change in the Sahel and Soudan, Africa, 1982–2005. Remote Sens Environ, 2007, 108: 385-392,
DOI
|
14 |
Hmimina G, Dufrêne E, Pontailler JY, Delpierre N, Aubinet M, Caquet B. Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: an investigation using ground-based NDVI measurements. Remote Sens Environ, 2013, 132: 145-158,
DOI
|
15 |
Huang S, Tang LN, Hupy JP, Wang Y, Shao GF. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J for Res, 2021, 32: 1-6,
DOI
|
16 |
Huete AR. A soil-adjusted vegetation index (SAVI). Remote Sens Environ, 1988, 25: 295-309,
DOI
|
17 |
Keenan RJ, Reams GA, Achard F, de Freitas JV, Grainger A, Lindquist E. Dynamics of global forest area: results from the FAO global forest resources assessment. For Ecol Manag, 2015, 352: 9-20,
DOI
|
18 |
Kruskal WH, Wallis WA. Use of ranks in one-criterion variance analysis. J Am Stat Assoc, 1952, 47(260): 583-662,
DOI
|
19 |
Larson AJ, Franklin JF. The tree mortality regime in temperate old-growth coniferous forests: the role of physical damage. Can J Forest Res, 2010, 40: 2091-2103,
DOI
|
20 |
Liu F, Liu HY, Xu CY, Shi L, Zhu XR, Qi Y, He WQ. Old-growth forests show low canopy resilience to droughts at the southern edge of the taiga. Glob Chang Biol, 2021, 27(11): 2392-2402,
DOI
|
21 |
Machouri N. Les subéraies marocaines face aux changements climatiques et actions anthropiques. Actes du colloque international de Niamey (Niger), 2009. Changement climatique et évaluation environnementale. Publication de la Secrétariat International Francophone pour l’Evaluation Environnementale (SIFEE) et l’Institut de l’Energie et de l’Environnement de la Francophonie (IEPF). Collect Éval Environ, 2010, 9: 297-312
|
22 |
Marini L, Økland B, Jönsson AM, Bentz B, Carroll A, Forster B, Grégoire J-C, Hurling R, Nageleisen LM, Netherer S, Ravn HP, Weed A, Schroeder M. Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography, 2017, 40: 1426-1435,
DOI
|
23 |
Mate AR, Deshmukh RR. Analysis of effects of air pollution on chlorophyll, water, carotenoid and anthocyanin content of tree leaves using spectral indices. Int J Eng Sci, 2016, 6: 5465-5474
|
24 |
Matsushita B, Yang W, Chen J, Onda Y, Qiu GY. Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects. Sensors, 2007, 7: 2636-2651,
DOI
|
25 |
Melaas EK, Friedl MA, Zhu Z. Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM plus data. Remote Sens Environ, 2013, 132: 176-185,
DOI
|
26 |
Moreno-Fernández D, Viana-Soto A, Camarero J, Zavala M, Tijerin-Triviño J, García M. Using spectral indices as early warning signals of forest dieback: the case of drought-prone pinus pinaster forests. Sci Total Environ, 2021, 793,
DOI
|
27 |
Pei ZF, Fang SB, Yang WN, Wang L, Wu MY, Zhang QF, Han W, Khoi DN. The relationship between NDVI and climate factors at different monthly time scales: a case study of grasslands in inner Mongolia, China (1982–2015). Sustainability, 2019, 11: 7243,
DOI
|
28 |
R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https:/ www.r-project.org
|
29 |
Riva MJ, Daliakopoulos IN, Eckert S, Hodel E, Liniger H. Assessment of land degradation in mediterranean forests and grazing lands using a landscape unit approach and the normalized difference vegetation index. Appl Geogr, 2017, 86: 8-21,
DOI
|
30 |
Rodríguez-Moreno VM, Bullock SH. Vegetation response to hydrologic and geomorphic factors in an arid region of the baja California Peninsula. Environ Monit Assess, 2014, 186: 1009-1021,
DOI
|
31 |
Roula S (2005) Caractérisations physicochimiques et valorisation des boues résiduaires urbaines pour la confection de substrats de culture en pépinière hors-sol. Mémoire de magistère en Sciences Agronomiques, Université Colonel El hadj Lakhdar, Batna, 115
|
32 |
Rouse JW, Jr, Haas RH, Deering DW, Schell JA, Harlan JC (1974) Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation, NASA/GSFC Type III Final Report; Texas A&M University: College Station, TX, USA; 371
|
33 |
Schoene D, Killmann W, von Luepke H, Loyche Wilkie M (2007) Definitional issues related to reducing emissions from deforestation in developing countries. FAO Forests and Climate Change Working Paper 5. Rome. http://www.fao.org/docrep/009/j9345e/j9345e00.htm
|
34 |
Shen M, Tang Y, Desai AR, Gough C, Chen J. Can EVI-derived land-surface phenology be used as a surrogate for phenology of canopy photosynthesis?. Int J Remote Sens, 2014, 35: 1162-1174,
DOI
|
35 |
Soubry I, Doan T, Chu T, Guo XL. A systematic review on the integration of remote sensing and GIS to forest and grassland ecosystem health attributes, indicators, and measures. Remote Sens, 2021,
DOI
|
36 |
Sugihara NG, van Wagtendonk JW, Shaffer KE, Fites- Kaufman J, Thode AE. Fire in California’s ecosystems, 2006 Berkeley University of California Press,
DOI
|
37 |
Sun TY, Deng LZ, Fei K, Fan XJ, Zhang LP, Ni L, Sun R. Runoff characteristics and soil loss mechanism in the weathered granite area under simulated rainfall. Water, 2021, 13(23): 3453,
DOI
|
38 |
Tariq A, Riaz I, Ahmad Z, Yang BS, Amin M, Kausar R, Andleeb S, Farooqi MA, Rafiq M. Land surface temperature relation with normalized satellite indices for the estimation of spatio-temporal trends in temperature among various land use land cover classes of an arid Potohar region using Landsat data. Environ Earth Sci, 2020,
DOI
|
39 |
Thavorntam W, Tantemsapya N. Vegetation greenness modeling in response to climate change for Northeast Thailand. J Geogr Sci, 2013,
DOI
|
40 |
Walker J, de Beurs K, Wynne RH. Phenological response of an Arizona dryland forest to short-term climatic extremes. Remote Sens, 2015, 7: 10832-10855,
DOI
|
41 |
Wang J, Rich PM, Price KP. Temporal responses of NDVI to precipitation and temperature in the central great plains, USA. Int J Remote Sens, 2003, 24: 2345-2364,
DOI
|
42 |
Xu C, Li YT, Hu J, Yang XJ, Sheng S, Liu MS. Evaluating the difference between the normalized difference vegetation index and net primary productivity as the indicators of vegetation vigor assessment at landscape scale. Environ Monit Assess, 2012, 184: 1275-1286,
DOI
|
43 |
Young NE, Anderson RS, Chignell SM, Vorster AG, Lawrence R, Evangelista PH. A survival guide to landsat preprocessing. Ecology, 2017, 98: 920-932,
DOI
|
44 |
Zhang LF, Jiao WZ, Zhang HM, Huang CP, Tong QX. Studying drought phenomena in the continental United States in 2011 and 2012 using various drought indices. Remote Sens Environ, 2017, 190: 96-106,
DOI
|
45 |
Zhou Z, Woodcock CE, Olofsson P. Continuous monitoring of forest disturbance using all available landsat imagery. Remote Sens Environ, 2012, 122: 75-91,
DOI
|