1 |
Ackerly DD, Knight CA, Weiss SB, Barton K, Starmer KP. Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia, 2002, 130: 449-457,
DOI
|
2 |
Ali K. Phenotypic characterization of Elaeagnus angustifolia using multivariate analysis. Ind Crops Prod, 2018, 120: 155-161,
DOI
|
3 |
Barros FDV, Goulart MF, Telles SBS, Lovato MB, Valladares F, Lemos-Filho JPD. Phenotypic plasticity to light of two congeneric trees from contrasting habitats: Brazilian Atlantic Forest versus cerrado (savanna). Plant Biol, 2012, 14: 208-215,
DOI
|
4 |
Bi DZ, Chen D, Khayatnezhad M, Hashjin ZS, Li ZF, Ma YX. Molecular identification and genetic diversity in Hypericum L.: a high value medicinal plant using RAPD markers. Genetika, 2021, 53: 393-405,
DOI
|
5 |
Chen R. Illustrated manual of Chinese trees and shrubs, 1937 Beijing Chinese Agricultural Society 166 in Chinese
|
6 |
Chen L. Ding YL, Fang YM. Molecular markers and the application in genetic diversity research. Special Topics in Plant Biology, 2016 Beijing China Forestry Publishing House 296-307 in Chinese
|
7 |
Clausen J, Keck DD, Hiesey WM (1940) Experimental studies on the nature of species. I. Effect of varied environments on western North American plants. Carnegie Institution of Washington Publication No. 520. Washington, DC
|
8 |
De Kort H, Prunier JG, Ducatez S, Honnay O, Baguette M, Stevens VM, Blanchet S. Life history, climate and biogeography interactively affect worldwide genetic diversity of plant and animal populations. Nat Commun, 2021, 12: 516,
DOI
|
9 |
DeWoody JA, Harder AM, Mathur S, Willoughby JR. The long-standing significance of genetic diversity in conservation. Mol Ecol, 2021, 30: 4147-4154,
DOI
|
10 |
Fick SE, Hijmans RJ. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int J Climatol, 2017, 37: 4302-4315,
DOI
|
11 |
Frankham R. Genetics and extinction. Biol Conserv, 2005, 126: 131-140,
DOI
|
12 |
García D, Zamora R, Gómez JM, Jordano P, Hódar JA. Geographical variation in seed production, predation and abortion in Juniperus communis throughout its range in Europe. J Ecol, 2000, 88: 435-446,
DOI
|
13 |
Glennon K, Cron G. Climate and leaf shape relationships in four Helichrysum species from the Eastern Mountain Region of South Africa. Evol Ecol, 2015, 29: 657-678,
DOI
|
14 |
Gong YB, Yang M, Vamosi JC, Yang HM, Mu WX, Li JK, Wan T. Wind or insect pollination? Ambophily in a subtropical gymnosperm Gnetum parvifolium (Gnetales). Plant Spec Biol, 2016, 31: 272-279,
DOI
|
15 |
Han S, Kang G, Park D, Kang H, Yoo B, Yoo E. Solvent extracts of Carpinus tschonoskii suppress the expression of atopic inflammatory cytokines and chemokines in RAW264.7 macrophages and HaCaT keratinocytes. Planta Med, 2011, 77: 1431,
DOI
|
16 |
Jenczewski E, Prosperi JM, Ronfort J. Evidence for gene flow between wild and cultivated Medicago sativa (Leguminosae) based on allozyme markers and quantitative traits. Am J Bot, 1999, 86: 677-687,
DOI
|
17 |
Kang GJ, Kang NJ, Han SC, Koo DH, Kang HK, Yoo BS, Yoo ES. The Chloroform Fraction of Carpinus tschonoskii Leaves Inhibits the Production of Inflammatory Mediators in HaCaT Keratinocytes and RAW264.7 Macrophages. Toxicol Res, 2012, 28: 255-262,
DOI
|
18 |
Kim MK, Kim SC, Kang JI, Boo HJ, Hyun JW, Koh YS, Park DB, Yoo ES, Kang JH, Kang HK. Neuroprotective effects of Carpinus tschonoskii MAX on 6-Hydroxydopamine-induced death of PC 12 cells. Biomol Ther, 2010, 18: 454-462,
DOI
|
19 |
Koksheeva I, Kislov D, Tvorogov S, Doudkin R. Relationships between leaf shape and climate in Rhododendron mucronulatum. Nord J Bot, 2017, 35: 618-626,
DOI
|
20 |
Lande R. Genetics and demography in biological conservation. Science, 1988, 241: 1455-1460,
DOI
|
21 |
Li XX. Ding YL. Genetic structure of rare and endangered woody plants. Fang YM, 2016 Special Topics in Plant Biology. Beijing China Forestry Publishing House, China 296-307 in Chinese
|
22 |
Li PQ, Skvortsov AK. Flora of China 4, 1999 Beijing Science Press 289-300
|
23 |
Li PQ, Zheng SX. Flora Republicae Popularis Sinica 21, 1979 Beijing Science Press, China 84-85 in Chinese
|
24 |
Li M, Han HR, Kang FF. Morphologic variation of leaves of Quercus liaotungensis Koidz. in Lingkong Mountain. Shanxi Province J Beijing for Univery, 2005, 27: 10-16, in Chinese
DOI
|
25 |
Li XP, Yu CY, Wu YY, Hong ZY, Sun J, Chen YP, Miao LX. The biological reason for endangerment of Carpinus putoensis and measures for gene conservation. Scientia Silvae Sinicae, 2010, 46: 69-76, in Chinese
DOI
|
26 |
Li DS, Shi ZM, Feng QH, Liu F. Response of leaf morphometric traits of Quercus species to climate in the temperate zone of the North-South Transect of Eastern China. Chinese J Plant Ecol, 2013, 37: 793-802, in Chinese
DOI
|
27 |
Li YG, Liu XH, Ma JW, Zhang XM, Xu LA. Phenotypic variation in Phoebe bournei populations preserved in the primary distribution area. J Forestry Res, 2018, 29: 35-44,
DOI
|
28 |
Li YH, Zhen Li, Xin ZM, Liu MH, Li YL, Hao YG. Effects of leaf shape plasticity on leaf surface temperature. Chinese J Plant Ecol, 2018, 42: 202-208, in Chinese
DOI
|
29 |
Liao GL, Xu XB, Huang CH, Zhong M, Jia DF. Resource evaluation and novel germplasm mining of Actinidia eriantha. Sci Hortic, 2021, 282: 110037,
DOI
|
30 |
Lin Y, Liu S, Luo J, Liu X, Lu W, Wang C, Arnold RJ. Landrace origins and phenotypic diversity through seedling morphology in Corymbia citriodora subsp. citriodora. Aust for, 2017, 80: 43-56,
DOI
|
31 |
Lister C, Dean C. Recombinant inbred lines for mapping RFLP and phenotypic markers in Arabidopsis thaliana. Plant J, 1993, 4: 745-750,
DOI
|
32 |
Liu YJ, Zhang LR, Xu XL, Niu HS. Understanding the wide geographic range of a clonal perennial grass: plasticity versus local adaptation. AoB Plants, 2016, 8: 141,
DOI
|
33 |
Lu ZQ (2017) Species delimitation in the subfamily Coryloideae of Betulaceae in China. PhD thesis, Lanzhou University, Lanzhou, China. https://doi.org/10.7666/d.D01297590 ( in Chinese)
|
34 |
Maximowicz CJ (1881) Diagnoses plantarum novarum asiaticarum. IV Bulletin de l'Académie impériale des sciences de St.-Pétersbourg 27:425–560
|
35 |
McDonald JE. Collection and washout of airborne pollens and spores by raindrops. Science, 1962, 135: 435-437,
DOI
|
36 |
Meng H, Wei X, Franklin SB, Wu H, Jiang M. Geographical variation and the role of climate in leaf traits of a relict tree species across its distribution in China. Plant Biol, 2017, 19: 552-561,
DOI
|
37 |
Milligan BG, Leebens-Mack J, Strand AE. Conservation genetics: beyond the maintenance of marker diversity. Mol Ecol, 2008, 3: 423-435,
DOI
|
38 |
Niinemets Ü, Al Afas N, Cescatti A, Pellis A, Ceulemans R. Petiole length and biomass investment in support modify light interception efficiency in dense poplar plantations. Tree Physiol, 2004, 24: 141-154,
DOI
|
39 |
Niklas KJ. The aerodynamics of wind pollination. Bot Rev, 1985, 51: 328-386,
DOI
|
40 |
Nobel PS. Physicochemical and Environmental Plant Physiology, 2005 Amsterdam Elsevier,
DOI
|
41 |
Parkhurst DF, Loucks OL. Optimal leaf size in relation to environment. J Ecol, 1972, 60: 505-537,
DOI
|
42 |
Pigliucci M, Murren CJ, Schlichting CD. Phenotypic plasticity and evolution by genetic assimilation. J Exp Biol, 2006, 209: 2362-2367,
DOI
|
43 |
Ritchie ME, Olff H. Spatial scaling laws yield a synthetic theory of biodiversity. Nature, 1999, 400: 557-560,
DOI
|
44 |
Scarano D, Rubio F, Ruiz JJ, Rao R, Corrado G. Morphological and genetic diversity among and within common bean (Phaseolus vulgaris L.) landraces from the Campania region (Southern Italy). Sci Hortic, 2014, 180: 72-78,
DOI
|
45 |
Smith WK, Geller GN. Leaf and environmental parameters influencing transpiration: Theory and field measurements. Oecologia, 1980, 46: 308-313,
DOI
|
46 |
Takenaka A. Effects of leaf blade narrowness and petiole length on the light capture efficiency of a shoot. Ecol Res, 1994, 9: 109-114,
DOI
|
47 |
Traiser C, Klotz S, Uhl D, Mosbrugger V. Environmental signals from leaves - a physiognomic analysis of European vegetation. New Phytol, 2005, 166: 465-484,
DOI
|
48 |
Vendramini F, Díaz S, Gurvich DE, Wilson PJ, Thompson K, Hodgson JG. Leaf traits as indicators of resource-use strategy in floras with succulent species. New Phytol, 2002, 154: 147-157,
DOI
|
49 |
Wang XR, Xie CP, Yi XG, Xiang QB. Study on the morphological variations of Cerasus subhirtella var. ascendens in different populations. Bull Bot Res, 2007, 27: 746-752,
DOI
|
50 |
Weijschedé J, Martínková J, de Kroon H, Huber H. Shade avoidance in Trifolium repens: costs and benefits of plasticity in petiole length and leaf size. New Phytol, 2006, 172: 655-666,
DOI
|
51 |
Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ. Plant ecological strategies: Some leading dimensions of variation between species. Annu Rev Ecol Evol Syst, 2002, 33: 125-159,
DOI
|
52 |
Wise RR, Olson AJ, Schrader SM, Sharkey TD. Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant Cell Environ, 2004, 27: 717-724,
DOI
|
53 |
Yang XY, Wang ZF, Luo WC, Guo XY, Zhang CH, Liu JQ, Ren GP. Plastomes of Betulaceae and phylogenetic implications. J Syst Evol, 2019, 57: 508-518,
DOI
|
54 |
Yang XY, Wang ZF, Zhang L, Hao GQ, Liu JQ, Yang YZ. A chromosome-level reference genome of the hornbeam Carpinus Fangiana. Sci Data, 2020, 7: 24,
DOI
|
55 |
Yin J, Ahn HS, Ha SY, Hwang IH, Yoon KD, Chin YW, Lee MW. Anti-skin ageing effects of phenolic compounds from Carpinus tschonoskii. Nat Prod Res, 2018, 33: 3317-3320,
DOI
|
56 |
Zhang ZZ, Ji MC, Fan YR, Zheng G, Liu ZG. Flowering Properties and Pollen Viability of Carpinus tientaiensis. J Zhejiang for Sci Tech, 2016, 36: 10-13, In Chinese
DOI
|
57 |
Zhang ZY, Jin GZ, Liu ZL. Effects of needle age on leaf traits and their correlations of Pinus koraiensis across different regions. Chin J Plant Ecol, 2021, 45: 253-264, in Chinese
DOI
|
58 |
Zhu YR, Gong YB. Methods of wind pollination. Biodiversity Sci, 2017, 25: 864-873, in Chinese
DOI
|
59 |
Zhu JY, Zhang LF, Shen P, Ren BQ, Liang Y, Chen ZD. Wind pollination characteristics of styles in Betulaceae. Chin Bull Bot, 2014, 49: 524-538, in Chinese
DOI
|
60 |
Zhu H, Zhu SX, Li YF, Yi XG, Duan YF, Wang XR. Leaf phenotypic variation in natural populations of Cerasus dielsiana. Chin J Plant Ecol, 2018, 42: 1168-1178, in Chinese
DOI
|
61 |
Zingaretti LM, Monfort A, Pérez-Enciso M. Automatic fruit morphology phenome and genetic analysis: An application in the octoploid strawberry. Plant Phenomics., 2021, 2021: 9812910,
DOI
|
62 |
Zwieniecki MA, Boyce CK, Holbrook NM. Hydraulic limitations imposed by crown placement determine final size and shape of Quercus rubra L. leaves. Plant Cell Environ, 2004, 27: 357-365,
DOI
|