1 |
Augusto L, Bert D. Estimating stemwood nutrient concentration with an increment borer: a potential source of error. Forestry, 2005, 78(4): 451-455,
DOI
|
2 |
Bārdule A, Liepiņš J, Liepiņš K, Stola J, Butlers A, Lazdiņš A. Variation in carbon content among the major tree species in hemiboreal forests in Latvia. Forests, 2021, 12(9): 1292,
DOI
|
3 |
Bert D, Danjon F. Carbon concentration variations in the roots, stem and crown of mature Pinus pinaster (Ait). For Ecol Manag, 2006, 222(1–3): 279-295,
DOI
|
4 |
Bevilacqua E (2002) Using specific volume increment (SVI) for quantifying growth responses in trees—theoretical and practical considerations. In: McRoberts, R.E, Reams, G.A, Deusen, P.C.V, Moser, J.W. (Eds.), Proceedings of the third annual forest inventory and analysis symposium. Forest Service U.S. Department of Agriculture, Michigan.
|
5 |
Breiman L. Random forests. Mach Learn, 2001, 45(1): 5-32,
DOI
|
6 |
Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE. Towards a worldwide wood economics spectrum. Ecol Lett, 2009, 12(4): 351-366,
DOI
|
7 |
Chen JM, Rich PM, Gower ST, Norman JM, Plummer S. Leaf area index of boreal forests: theory, techniques, and measurements. J Geophys Res, 1997, 102(D24): 29429-29443,
DOI
|
8 |
Dong HJ, Wang XC, Yuan DY, Liu D, Liu YL, Sang Y, Wang XC. Radial distribution differences of non-structural carbohydrates in stems of tree species of different wood in a temperate forest. Chin J Plant Ecol, 2022, 46(6): 722-734,
DOI
|
9 |
Doraisami M, Kish R, Paroshy NJ, Domke GM, Thomas SC, Martin AR. A global database of woody tissue carbon concentrations. Sci Data, 2022, 9: 284,
DOI
|
10 |
Elias M, Potvin C. Assessing inter- and intra-specific variation in trunk carbon concentration for 32 neotropical tree species. Can J for Res, 2003, 33(6): 1039-1045,
DOI
|
11 |
Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ. Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytol, 2010, 186(3): 593-608,
DOI
|
12 |
Erb KH, Kastner T, Plutzar C, Bais ALS, Carvalhais N, Fetzel T, Gingrich S, Haberl H, Lauk C, Niedertscheider M, Pongratz J, Thurner M, Luyssaert S. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature, 2018, 553: 73-76,
DOI
|
13 |
Frölicher TL, Winton M, Sarmiento JL. Continued global warming after CO2 emissions stoppage. Nat Clim Change, 2014, 4: 40-44,
DOI
|
14 |
Gao BL, Taylor AR, Chen HYH, Wang J. Variation in total and volatile carbon concentration among the major tree species of the boreal forest. For Ecol Manag, 2016, 375: 191-199,
DOI
|
15 |
Garnier E, Shipley B, Roumet C, Laurent G. A standardized protocol for the determination of specific leaf area and leaf dry matter content. Funct Ecol, 2001, 15(5): 688-695,
DOI
|
16 |
Girardin CAJ, Jenkins S, Seddon N, Allen M, Lewis SL, Wheeler CE, Griscom BW, Malhi Y. Nature-based solutions can help cool the planet—if we act now. Nature, 2021, 593: 191-194,
DOI
|
17 |
Herrero de Aza C, Turrión MB, Pando V, Bravo F. Carbon in heartwood, sapwood and bark along the stem profile in three Mediterranean Pinus species. Ann for Sci, 2011, 68(6): 1067,
DOI
|
18 |
Jones DA, O’Hara KL. The influence of preparation method on measured carbon fractions in tree tissues. Tree Physiol, 2016, 36(9): 1177-1189,
DOI
|
19 |
Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO. Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 2010, 26(11): 1463-1464,
DOI
|
20 |
Lamlom SH, Savidge RA. A reassessment of carbon content in wood: variation within and between 41 North American species. Biomass Bioenergy, 2003, 25(4): 381-388,
DOI
|
21 |
Larjavaara M, Muller-Landau HC. Rethinking the value of high wood density. Funct Ecol, 2010, 24(4): 701-705,
DOI
|
22 |
Ma SH, He F, Tian D, Zou DT, Yan ZB, Yang YL, Zhou TC, Huang KY, Shen HH, Fang JY. Variations and determinants of carbon content in plants: a global synthesis. Biogeosciences, 2018, 15(3): 693-702,
DOI
|
23 |
Ma SH, Eziz A, Tian D, Yan ZB, Cai Q, Jiang MW, Ji CJ, Fang JY. Size- and age-dependent increases in tree stem carbon concentration: implications for forest carbon stock estimations. J Plant Ecol, 2020, 13(2): 233-240,
DOI
|
24 |
Martin AR, Thomas SC. A reassessment of carbon content in tropical trees. PLoS ONE, 2011, 6(8): ,
DOI
|
25 |
Martin AR, Gezahegn S, Thomas SC. Variation in carbon and nitrogen concentration among major woody tissue types in temperate trees. Can J for Res, 2015, 45(6): 744-757,
DOI
|
26 |
Martin AR, Doraisami M, Thomas SC. Global patterns in wood carbon concentration across the world’s trees and forests. Nat Geosci, 2018, 11: 915-920,
DOI
|
27 |
McCulloh K, Sperry JS, Lachenbruch B, Meinzer FC, Reich PB, Voelker S. Moving water well: comparing hydraulic efficiency in twigs and trunks of coniferous, ring-porous, and diffuse-porous saplings from temperate and tropical forests. New Phytol, 2010, 186(2): 439-450,
DOI
|
28 |
Paroshy NJ, Doraisami M, Kish R, Martin AR. Carbon concentration in the world’s trees across climatic gradients. New Phytol, 2021, 232(1): 123-133,
DOI
|
29 |
Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC. New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot, 2013, 61(3): 167,
DOI
|
30 |
Pompa-García M, Sigala-Rodríguez JA, Jurado E, Flores J. Tissue carbon concentration of 175 Mexican forest species. Iforest, 2017, 10(4): 754-758,
DOI
|
31 |
Spicer R. Groover A, Cronk Q. Variation in angiosperm wood structure and its physiological and evolutionary significance. Comparative and evolutionary genomics of angiosperm trees, 2016 Cham Springer 19-60,
DOI
|
32 |
Tang ZY, Xu WT, Zhou GY, Bai YF, Li JX, Tang XL, Chen DM, Liu Q, Ma WH, Xiong GM, He HL, He NP, Guo YP, Guo Q, Zhu JL, Han WX, Hu HF, Fang JY, Xie ZQ. Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems. Proc Natl Acad Sci USA, 2018, 115(16): 4033-4038,
DOI
|
33 |
Thomas SC, Malczewski G. Wood carbon content of tree species in Eastern China: interspecific variability and the importance of the volatile fraction. J Environ Manage, 2007, 85(3): 659-662,
DOI
|
34 |
Thomas SC, Martin AR. Carbon content of tree tissues: a synthesis. Forests, 2012, 3(2): 332-352,
DOI
|
35 |
Thripob P, Fortunel C, Réjou-Méchain M, Nathalang A, Chanthorn W. Size-dependent intraspecific variation in wood traits has little impact on aboveground carbon estimates in a tropical forest landscape. Funct Ecol, 2022, 36(9): 2303-2316,
DOI
|
36 |
Tyree MT, Zimmermann MH. Xylem structure and the ascent of sap, 2002 Berlin Springer,
DOI
|
37 |
Wang CK. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. For Ecol Manag, 2006, 222(1–3): 9-16,
DOI
|
38 |
Wang XC, Wang CK, Zhang QZ, Quan XK. Heartwood and sapwood allometry of seven Chinese temperate tree species. Ann for Sci, 2010, 67(4): 410,
DOI
|
39 |
Wang F, Harindintwali JD, Yuan ZZ, Wang M, Wang FM, Li S, Yin ZG, Huang L, Fu YH, Li L, Chang SX, Zhang LJ, Rinklebe J, Yuan ZQ, Zhu QG, Xiang LL, Tsang DCW, Xu L, Jiang X, Liu JH, Wei N, Kästner M, Zou Y, Ok YS, Shen JL, Peng DL, Zhang W, Barceló D, Zhou YJ, Bai ZH, Li BQ, Zhang B, Wei K, Cao HJ, Tan ZL, Zhao LB, He X, Zheng JX, Bolan N, Liu XH, Huang CP, Dietmann S, Luo M, Sun NN, Gong JR, Gong YL, Brahushi F, Zhang TT, Xiao CD, Li XF, Chen WF, Jiao NZ, Lehmann J, Zhu YG, Jin HG, Schäffer A, Tiedje JM, Chen JM. Technologies and perspectives for achieving carbon neutrality. Innov, 2021, 2(4): 100180,
DOI
|
40 |
Wheeler EA, Baas P, Rodgers S. Variations in dieot wood anatomy: a global analysis based on the insidewood database. IAWA J, 2007, 28(3): 229-258,
DOI
|
41 |
Widagdo FRA, Li FR, Xie LF, Dong LH. Intra- and inter-species variations in carbon content of 14 major tree species in Northeast China. J for Res, 2021, 32(6): 2545-2556,
DOI
|
42 |
Zhang QZ, Wang CK, Wang XC, Quan XK. Carbon concentration variability of 10 Chinese temperate tree species. For Ecol Manag, 2009, 258(5): 722-727,
DOI
|
43 |
Zhang HY, Wang CK, Wang XC, Cheng FY. Spatial variation of non-structural carbohydrates in Betula platyphylla and Tilia amurensis stems. Chin J Appl Ecol, 2013, 24(11): 3050-3056,
DOI
|
44 |
Zhang HY, Wang CK, Wang XC. Spatial variations in non-structural carbohydrates in stems of twelve temperate tree species. Trees, 2014, 28(1): 77-89,
DOI
|
45 |
Zhang JH, Zhao N, Liu CC, Yang H, Li ML, Yu GR, Wilcox K, Yu Q, He NP. C: N: P stoichiometry in China’s forests: from organs to ecosystems. Funct Ecol, 2018, 32(1): 50-60,
DOI
|
46 |
Zhao N, Yu GR, He NP, Wang QF, Guo DL, Zhang XY, Wang RL, Xu ZW, Jiao CC, Li NN, Jia YL. Coordinated pattern of multi-element variability in leaves and roots across Chinese forest biomes. Glob Ecol Biogeogr, 2016, 25(3): 359-367,
DOI
|
47 |
Zhao R, Wang CK, Quan XK, Wang XC. Ecological stoichiometric characteristics of different organs of broadleaf tree species in a temperate forest in Maoershan area Heilongjiang Province. Sci Silvae Sin, 2021, 57(2): 1-11,
DOI
|