1 |
Afdeni S, Sutikno S, Handayani YL. Analisis Indeks Kekeringan Meteorologis Lahan Gambut Di Pulau Bengkalis. Jurnal Online Mahasiswa JOM Bidang Teknik dan Sains, 2016, 4(2): 1-10
|
2 |
Agus F, Hairiah K, Mulyani A (2011) Measuring carbon stock in peat soils: practical guidelines. Bogor, Indonesia: World Agroforestry Centre (ICRAF) Southeast Asia regional program, indonesian centre for agricultural land resources research and development. p 60.
|
3 |
Basintal A, Matunjau C, Freddie KTK, Jaini M, Angampun G, Malim P, Harim W (2007) ‘Klias forest reserve conservation plan.’ Sabah Forestry Department.
|
4 |
Borůvka L, Donátová H, Němeček K. Spatial distribution and correlation of soil properties in a field: a case study. Plant Soil Environ, 2002, 48: 425-432,
DOI
|
5 |
Che Azmi NA, Mohd Apandi N, Ahmad AS. Carbon emissions from the peat fire problem—a review. Environ Sci Pollut R, 2021, 28: 16948-16961,
DOI
|
6 |
Darusman T, Murdiyarso D, Impron I, Chaniago IA, Lestari DP. Carbon dynamics in rewetted tropical peat swamp forests. Climate, 2022, 10: 1-16,
DOI
|
7 |
Davies GM, Gray A, Rein G, Legg CJ. Peat consumption and carbon loss due to smouldering wildfire in a temperate peatland. For Ecol Manag, 2013, 308: 169-177,
DOI
|
8 |
Dlapa P, Bodí MB, Mataix-Solera J, Cerdà A, Doerr SH. FT-IR spectroscopy reveals that ash water repellency is highly dependent on ash chemical composition. CATENA, 2013, 108: 35-43,
DOI
|
9 |
|
10 |
Gabriel M, Toader C, Faul F, Roßkopf N, Grundling P, Huyssteen C, Grundling AT, Zeitz J. Physical and hydrological properties of peat as proxies for degradation of south African peatlands: implications for conservation and restoration. Mires Peat, 2018, 21: 1-21,
DOI
|
11 |
Girkin NT, Vane CH, Cooper HV, Moss-Hayes V, Craigon J, Turner BL, Ostle N, Sjögersten S. Spatial variability of organic matter properties determines methane fluxes in a tropical forested peatland. Biogeochemistry, 2019, 142: 231-245,
DOI
|
12 |
Granath G, Moore PA, Lukenbach MC, Waddington JM. Mitigating wildfire carbon loss in managed northern peatlands through restoration. Sci Rep UK, 2016, 6(1): 28498,
DOI
|
13 |
|
14 |
Handayani EP, Maswar M. Soil physicochemical properties in oil palm plantations impacted to peatland fire. IOP Conf Ser Earth Environ Sci, 2019, 336(1): ,
DOI
|
15 |
Huang X, Rein G, Chen H. Computational smoldering combustion: predicting the roles of moisture and inert contents in peat wildfires. P Combust Inst, 2015, 35(3): 2673-2681,
DOI
|
16 |
Iglovikov A, Motorin A. Composition of organic matter in peat soils of the northern trans-Urals depending on groundwater level. E3S Web Conf, 2019, 135: 4-8,
DOI
|
17 |
Junedi H, Kurniawan Mastur A, Ar DA (2021) Study of the critical limits of the ground water for peatland fire prevention. In The 3rd green development international conference (GDIC 2020). Atlantis Press, pp 461–465.
|
18 |
Kettridge N, Humphrey RE, Smith JE, Lukenbach MC, Devito KJ, Petrone RM, Waddington JM. Burned and unburned peat water repellency: Implications for peatland evaporation following wildfire. J Hydrol, 2014, 513: 335-341,
DOI
|
19 |
Könönen M, Jauhiainen J, Laiho R, Kusin K, Vasander H. Physical and chemical properties of tropical peat under stabilised land uses. Mires Peat, 2015, 16(8): 1-13
|
20 |
Leng LY, Ahmed OH, Jalloh MB. Brief review on climate change and tropical peatlands. Geosci Front, 2019, 10(2): 373-380,
DOI
|
21 |
McMorrow JM, Evans MG, Cutler ME (2003) The effect of moisture content and humification on the hyperspectral reflectance of peat. In: Proc. Remote Sensing and Photogrammetric Society (RSPSoc) Conference, Nottingham, CDROM. Nottingham: RSPSoc, pp 10–12.
|
22 |
Munawi MK (2014) Integrated management plan for north selangor peat swamp forest 2014–2023. Selangor State Forestry Department.
|
23 |
Nelson K, Thompson D, Hopkinson C, Petrone R, Chasmer L. Peatland-fire interactions: a review of wildland fire feedback and interactions in Canadian boreal peatlands. Sci Total Environ, 2021, 769,
DOI
|
24 |
Noble A, Palmer SM, Glaves DJ, Crowle A, Holden J. Impacts of peat bulk density, ash deposition and rainwater chemistry on establishment of peatland mosses. Plant Soil, 2017, 419: 41-52,
DOI
|
25 |
Perdana LR, Ratnasari NG, Ramadhan ML, Palamba P, Nasruddin NYS. Hydrophilic and hydrophobic characteristics of dry peat. IOP Conf Ser Earth Environ Sci, 2018, 105(1): ,
DOI
|
26 |
Rein G. Smouldering combustion phenomena in science and technology. Int Rev Chem Eng, 2009, 1: 3-18
|
27 |
Rein G, Huang X. Smouldering wildfires in peatlands, forests and the arctic: challenges and perspectives. Curr Opin Environ Sci Health, 2021, 24: 100296,
DOI
|
28 |
Rein G (2013) Smouldering fires and natural fuels. Fire phenomena and the Earth system: an interdisciplinary guide to fire science. CM Belcher (ed). John Wiley & Sons, Oxford, pp 15–33
|
29 |
Santoso MA, Cui W, Amin HMF, Christensen EG, Nugroho YS, Rein G. Laboratory study on the suppression of smouldering peat wildfires: effects of flow rate and wetting agent. Int J Wildland Fire, 2021, 30(5): 378-390,
DOI
|
30 |
|
31 |
|
32 |
|
33 |
Sinclair AL, Graham LL, Putra EI, Saharjo BH, Applegate G, Grover SP, Cochran MA. Effects of distance from canal and degradation history on peat bulk density in a degraded tropical peatland. Sci Total Environ, 2020, 699: 134199,
DOI
|
34 |
Sutikno S, Nasrul B, Gunawan H, Jayadi R, Saputra E, Yamamoto K. The effectiveness of canal blocking for hydrological restoration in tropical peatland. MATEC Web Conf, 2019, 276: 06003,
DOI
|
35 |
Szajdak LW, Jezierski A, Wegner K, Meysner T, Szczepanski M. Influence of drainage on peat organic matter: and Transformation. Molecules, 2020, 25(11): 2587,
DOI
|
36 |
Tata HL, Pradjadinata S. Native species for degraded peat swamp forest rehabilitation. J Trop Silvic, 2016, 7(3): S80-S82,
DOI
|