1 |
Acquarelli J, van Laarhoven T, Gerretzen J, Tran TN, BuydensMarchiori LME. Convolutional neural networks for vibrational spectroscopic data analysis. Anal Chim Acta, 2017, 954: 22-31,
DOI
|
2 |
Asadi K, Littman M L (2017) In: An alternative softmax operator for reinforcement learning. In: Proc. 28th int’l conf. mach. Learn. Bellevuepp, WA, 243–252
|
3 |
Chen YY, Wang ZB. Quantitative analysis modeling of infrared spectroscopy based on ensemble convolutional neural networks. Chemometr Intell Lab Syst, 2018, 181: 1-10,
DOI
|
4 |
Gao SH, Han Q, Li D, Chen MM, Peng P. Representative batch normalization with feature calibration. Virtual, 2021, 1: 8669-8679
|
5 |
Gao MY, Wang F, Song P, Liu JY, Qi DW. BLNN: multiscale feature fusion-based bilinear fine-grained convolutional neural network for image classification of wood knot defects. J Sens, 2021, 2021: 1-18
|
6 |
Graham B, Engelhardt B, Van den Oord A (2014) Fractional max-pooling. arXiv preprint arXiv:1412.6071
|
7 |
He KM, Zhang XY, Ren SQ, Sun J. Deep residual learning for image recognition. CVPR, 2016 Las Vegas Nevada 770-778
|
8 |
Hu C, Qu JJ, Xu CP, Zhu AJ. Garment image recognition based on adaptive pooling neural network. J Comput Appl, 2018, 38(8): 2211
|
9 |
Hu J, Shen L, Sun G. Squeeze-and-excitation networks, 2018 Salt Lake City Utah CVPR 7132-7141
|
10 |
Huang PG, Fan Z, Li XP, Guan C, Zhang YF, Wu ZK. Review of computer-based wood feature extraction and identification. World for Res, 2020, 33(01): 44-48
|
11 |
Huang G, Liu Z, Van Der Maaten L, Weinberger Kilian Q (2017) Densely Connected Convolutional Networks. CVPR 2017. Honolulu Hawaii. 4700–4708
|
12 |
Jia WS, Zhang HZ, Ma J, Liang G, Wang JH, Liu X. Study on the predication modeling of COD for water based on UV-VIS spectroscopy and CNN algorithm of deep learning. Spectrosc Spectr Anal, 2020, 40(9): 2981
|
13 |
Jiao LC, Zhang F, Liu F, Yang SY, Li LL, Feng ZX, Qu R. A survey of deep learning-based object detection. IEEE Access, 2019, 7: 128837-128868,
DOI
|
14 |
Kauppinen JK. Fourier Self-Deconvolution in Spectroscopy. Spectrom Tech, 1983, 1983: 199-232,
DOI
|
15 |
Krizhevsky A, Sutskever I, Hinton G. Imagenet classification with deep convolutional neural networks. Commun ACM, 2012, 60(6): 84-90,
DOI
|
16 |
Kuesel AC, Stoyanova R, Aiken NR, Li CW, Szwergold BS, Shaller C, Brown TR. Quantitation of resonances in biological 31P NMR spectra via principal component analysis: potential and limitations. NMR Biomed, 1996, 9(3): 93-104,
DOI
|
17 |
Laakmann F, Petersen P. Efficient approximation of solutions of parametric linear transport equations by ReLU DNNs. Adv Comput Math Dio, 2021,
DOI
|
18 |
Lecun Y, Bottou L, Bengio Y. Gradient-based learning applied to document recognition. Proc IEEE, 1998, 86(11): 2278-2324,
DOI
|
19 |
Lecun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436-444,
DOI
|
20 |
Ma HY, Li XH, Qiang L, Xie XB, Chong J. Zhao CX (2020) Research on identification technology of explosive vibration based on EEMD energy entropy and multiclassification SVM. Shock Vib, 2020, 2: 1-10
|
21 |
Macior A, Zaborniak I, Chmielarz P, Smenda J, Wolski K, Ciszkowicz E, Lecka-Szlachta K. A new protocol for ash wood modification: synthesis of hydrophobic and antibacterial brushes from the wood surface. Molecules, 2022, 27(3): 890,
DOI
|
22 |
Nisgoski S, DeOliveira A, DeMuñiz G. Artificial neural network and SIMCA classification in some wood discrimination based on near-infrared spectra. Wood Sci Technol, 2017, 51(4): 929-942,
DOI
|
23 |
Pachuta SJ. Enhancing and automating TOF-SIMS data interpretation using principal component analysis. Appl Surf Sci, 2004, 231(6): 217-223,
DOI
|
24 |
Pan X, Qiu J, Yang Z. Identification of softwood species using convolutional neural networks and raw near-infrared spectroscopy. Wood Mater Sci Eng, 2022, 1: 1-11
|
25 |
Pradhan T, Kumar P, Pal S. CLAVER: an integrated framework of convolutional layer, bidirectional LSTM with attention mechanism based scholarly venue recommendation. Inf Sci, 2021, 559: 212-235,
DOI
|
26 |
Qin YH, Ding XQ, Gong HL. High dimensional feature selection in near infrared spectroscopy classification. Infrared Laser Eng, 2013, 42(5): 1355-1359
|
27 |
Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature, 1986, 323(6088): 533-536,
DOI
|
28 |
|
29 |
Soares SFC, Medeiros EP, Pasquini C. Classification of individual cotton seeds with respect to variety using near-infrared hyperspectral imaging. Anal Methods, 2016, 8(48): 8498-8505,
DOI
|
30 |
Szegedy C, Liu W, Jia YQ, Sermanet P, Reed S, Anguelov D, Rabinovich A. Going deeper with convolutions, 2015 Boston Massachusetts CVPR 1-9
|
31 |
Tang YS, Chen ZG. Soil pH prediction based on convolution neural network and near infrared spectroscopy. Spectrosc Spectr Anal, 2021, 41(3): 892
|
32 |
Wang XS, Sun YD, Huang AM. Research on infrared spectrum for timber species identification. For Eng, 2015, 31(6): 65-70
|
33 |
Wang XS, Sun YD, Huang MG, Huang AM. Back propagation artificial neural network combined with near infrared spectroscopy for timber recognition. J Northeast for Univ, 2015, 43(12): 82-85
|
34 |
Wang QQ, Gao QX, Gao XB, Nie FP. l(2, p)-Norm based PCA for image recognition. IEEE Trans Image Process, 2017, 27(3): 1336-1346,
DOI
|
35 |
Wang WQ, Zhang J, Wang FL. Attention bilinear pooling for fine-grained classification. Symmetry, 2019, 11(8): 1033,
DOI
|
36 |
Xia JJ, Huang Y, Li QQ, Xiong YM, Min SG. Convolutional neural network with near-infrared spectroscopy for plastic discrimination. ECL, 2021, 19(5): 3547-3555
|
37 |
Yang SY, Kwon O, Park Y, Chung H, Kim H, Park SY, Choi IG, Yeo H. Application of neural networks for classifying softwood species using near infrared spectroscopy. J near Infrared Spectrosc, 2020, 28(5–6): 298-307,
DOI
|
38 |
Zhang W, Li CH, Peng GL, Chen YH, Zhang ZJ. A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load. Mech Syst Signal Process, 2017, 100: 439-453,
DOI
|