1 |
Alzohairy AM. Bioedit: an important software for molecular biology. GERF Bull Biosci, 2011, 1: 60-61
|
2 |
Block MA, Jouhet J. Lipid trafficking at endoplasmic reticulum chloroplast membrane contact sites. Curr Opin Cell Biol, 2015, 35: 21-29,
DOI
|
3 |
Bradshaw H, Ceulemans R, Davis J, Stettler R. Emerging model systems in plant biology: poplar (Populus) as a model forest tree. J Plant Growth Regul, 2000, 19(3): 306-313,
DOI
|
5 |
Busk PK, Page SM. Regulation of abscisic acid-induced transcription. Plant Mol Biol, 1998, 37(3): 425-435,
DOI
|
6 |
Chen QF, Xiao S, Chye ML. Overexpression of the Arabidopsis 10-kilodalton acyl-coenzyme a-binding protein ACBP6 enhances freezing tolerance. Plant Physiol, 2008, 148(1): 304-315,
DOI
|
7 |
Chen QF, Xiao S, Qi W, Mishra G, Ma J, Wang M, Chye ML. The Arabidopsis acbp1acbp2 double mutant lacking acyl-CoA-binding proteins ACBP1 and ACBP2 is embryo lethal. New Phytol, 2010, 186: 843-855,
DOI
|
8 |
Choi D, Bostock RM, Avdiushko S, Hildebrand DF. Lipid-derived signals that discriminate wound-and pathogen responsive isoprenoid pathways in plants: methyl jasmonate and the fungal elicitor arachidonic acid induce different 3-hydroxy-3-methylglutaryl-coenzyme A reductase genes and antimicrobial isoprenoids in Solanum tuberosum L. Proc Natl Acad Sci USA, 1994, 91(6): 2329-2333,
DOI
|
9 |
Chye ML, Huang BQ, Zee SY. Isolation of a gene encoding Arabidopsis membrane associated acyl-CoA binding protein and immunolocalization of its gene product. Plant J, 1999, 18(2): 205-214,
DOI
|
10 |
Du ZY, Chen MX, Chen QF, Xiao S, Chye ML. Overexpression of Arabidopsis acyl-CoA-binding protein ACBP2 enhances drought tolerance. Plant Cell Environ, 2013, 36: 300-314,
DOI
|
11 |
Du ZY, Chen MX, Chen QF, Xiao S, Chye ML. Arabidopsis acyl CoA-binding protein ACBP1 participates in the regulation of seed germination and seedling development. Plant J, 2013, 74(2): 294-309,
DOI
|
12 |
Du ZY, Arias T, Meng W, Chye ML. Plant acyl-CoA-binding proteins: an emerging family involved in plant development and stress responses. Prog Lipid Res, 2016, 63: 165-181,
DOI
|
13 |
Emanuelsson O, Nielsen H, Brunak S, Heijne GV. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol, 2000, 300(4): 1005-1016,
DOI
|
14 |
Fan J, Liu J, Culty M, Papadopoulos V. Acyl-coenzyme A binding domain containing 3 (ACBD3; PAP7; GCP60): an emerging signaling molecule. Prog Lipid Res, 2010, 49(3): 218-234,
DOI
|
15 |
Gao W, Xiao S, Li HY, Tsao SW, Chye ML. Arabidopsis thaliana acyl-CoA-binding protein ACBP2 interacts with heavy-metalbinding farnesylated protein AtFP6. New Phytol, 2009, 181: 89-102,
DOI
|
16 |
Gao W, Li HY, Xiao S, Chye ML. Acyl-CoA-binding protein 2 binds lysophospholipase 2 and lysoPC to promote tolerance to cadmium-induced oxidative stress in transgenic Arabidopsis. Plant J, 2010, 62(2): 989-1003
|
17 |
Gao W, Li HY, Xiao S, Chye ML. Protein interactors of acyl CoA-binding protein ACBP2 mediate cadmium tolerance in Arabidopsis. Plant Signal Behav, 2010, 5(8): 1025-1027,
DOI
|
18 |
Gómez-Porras JL, Riaño-Pachón DM, Dreyer I, Mayer JE, Mueller-Roeber B. Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice. BMC Genomics, 2007, 8(1): 260,
DOI
|
19 |
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Rokhsar DS. Phytozome: a comparative platform for green plant genomics. Nucleic Acid Res, 2012, 40(D1): D1178-D1186,
DOI
|
20 |
Guelette BS, Benning UF, Hoffmann-Benning S. Identification of lipids and lipid-binding proteins in phloem exudates from Arabidopsis thaliana. J Exp Bot, 2012, 63(10): 3603-3616,
DOI
|
21 |
Guidotti A, Forchetti CM, Corda MG, Konkel D, Bennett CD, Costa E. Isolation, characterization, and purification to homogeneity of an endogenous polypeptide with agonistic action on benzodiazepine receptors. P Natl Acad Sci USA, 1983, 80(11): 3531-3535,
DOI
|
22 |
Guo ZH, Haslam RP, Michaelson LV, Yeung EC, Lung SC, Napier JA, Chye ML. The overexpression of rice ACYL-CoA-BINDING PROTEIN2 increases grain size and bran oil content in transgenic rice. Plant J, 2019, 100(6): 1132-1147,
DOI
|
23 |
Hattori T, Totsuka M, Hobo T, Kagaya Y, Yamamoto-Toyoda A. Experimentally determined sequence requirement of ACGT-containing abscisic acid response element. Plant Cell Physiol, 2002, 43(1): 136-140,
DOI
|
24 |
Hsiao AS, Haslam RP, Michaelson LV, Liao P, Chen QF, Sooriyaarachchi S, Mowbray SL, Napier JA, Tanner JA, Chye ML. Arabidopsis cytosolic acyl-CoA-binding proteins ACBP4, ACBP5 and ACBP6 have overlapping but distinct roles in seed development. Biosci Rep, 2014, 34(6): e00165,
DOI
|
25 |
Hsiao AS, Yeung EC, Ye ZW, Chye ML. The Arabidopsis cytosolic acyl-CoA-binding proteins play combinatory roles in pollen development. Plant Cell Physiol, 2015, 56(2): 322-333,
DOI
|
26 |
Ibraheem O, Botha CE, Bradley G. In silico analysis of cis-acting regulatory elements in 5’regulatory regions of sucrose transporter gene families in rice (Oryza sativa Japonica) and Arabidopsis thaliana. Comput Biol Chem, 2010, 34(5–6): 268-283,
DOI
|
27 |
Ito J, Batth TS, Petzold CJ, Redding-Johanson AM, Mukhopadhyay A, Verboom R, Meyer EH, Millar AH, Heazlewood JL. Analysis of the Arabidopsis cytosolic proteome high-lights subcellular partitioning of central plant metabolism. J Proteome Res, 2011, 10(4): 1571-1582,
DOI
|
28 |
Jansson S, Douglas CJ. Populus: a model system for plant biology. Annu Rev Plant Biol, 2007, 58(1): 435-458,
DOI
|
29 |
Knudsen J, Jensen MV, Hansen JK, Faergeman NJ, Neergaard TB, Gaigg B. Role of acylCoA binding protein in acylCoA transport, metabolism and cell signaling. Mol Cell Biochem, 1999, 192(1–2): 95-103,
DOI
|
30 |
Kragelund BB, Andersen KV, Madsen JC, Knudsen J, Poulsen FM. Three-dimensional structure of the complex between acyl-coenzyme A binding protein and palmitoyl-coenzyme A. J Mol Biol, 1993, 230(4): 1260-1277,
DOI
|
31 |
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecul Biol Evolut, 2016, 33: 1870-1874,
DOI
|
32 |
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. Clustal W and Clustal X version 2.0. Bioinformatics, 2007, 23(21): 2947-2948,
DOI
|
33 |
Leung KC, Li HY, Xiao S, Tse MH, Chye ML. Arabidopsis ACBP3 is an extracellularly targeted acyl-CoA-binding protein. Planta, 2006, 223(5): 871-881,
DOI
|
34 |
Li HY, Chye ML. Membrane localization of Arabidopsis acyl-CoA binding protein ACBP2. Plant Mol Biol, 2003, 51(4): 483-492,
DOI
|
35 |
Li HY, Chye ML. Arabidopsis acyl-CoA-binding protein ACBP2 interacts with an ethylene-responsive element-binding protein, AtEBP, via its ankyrin repeats. Plant Mol Biol, 2004, 54(2): 233-243,
DOI
|
36 |
Li HY, Xiao S, Chye ML. Ethylene-and pathogen-inducible Arabidopsis acyl-CoA-binding protein 4 interacts with an ethylene-responsive element binding protein. J Exp Bot, 2008, 59(14): 3997-4006,
DOI
|
37 |
Licausi F, Kosmacz M, Weits DA, Giuntoli B, Giorgi FM, Voesenek LACJ, Perata P, van Dongen JT. Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature, 2011, 479(7373): 419-422,
DOI
|
38 |
Liu F, Zhang XB, Lu CM, Zeng XH, Li YJ, Fu DH, Wu G. Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis. J Exp Bot, 2015, 66(19): 5663-5681,
DOI
|
39 |
Lung SC, Chye ML. Deciphering the roles of acyl-CoA-binding proteins in plant cells. Protoplasma, 2016, 253(5): 1177-1195,
DOI
|
40 |
Mattick JS, Gagen MJ. The evolution of controlled multitasked gene networks: the role of introns and other noncoding RNAs in the development of complex organisms. Mol Biol Evol, 2001, 18(9): 1611-1630,
DOI
|
41 |
Meng W, Su YC, Saunders RM, Chye ML. The rice acyl-CoA-binding protein gene family: phylogeny, expression and functional analysis. New Phytol, 2011, 189(4): 1170-1184,
DOI
|
42 |
Meng W, Hsiao AS, Gao CJ, Jiang LW, Chye ML. Subcellular localization of rice acyl-CoA-binding proteins (ACBPs) indicates that OsACBP6::GFP is targeted to the peroxisomes. New Phytol, 2014, 203(2): 469-482,
DOI
|
43 |
Meng W, Xu LJ, Du ZY, Wang F, Zhang R, Song XS, Lam SM, Shui GH, Li YH, Chye ML. Rice acyl-coa-binding protein6 affects acyl-coa homeostasis and growth in rice. Rice, 2020, 13(1): 75,
DOI
|
44 |
Napier JA, Haslam RP. As simple as ACB-new insights into the role of acyl-CoA-binding proteins in Arabidopsis. New Phytol, 2010, 186(4): 781-783,
DOI
|
45 |
Narayanan SP, Pan L, Taylor P, Lo C, Chye M. Overexpression of a monocot acyl-coA-binding protein confers broad-spectrum pathogen protection in a dicot. Proteomics, 2019, 19(12): e1800368,
DOI
|
46 |
Narayanan SP, Lung SC, Liao P, Lo C, Chye ML. The overexpression of OsACBP5 protects transgenic rice against necrotrophic, hemibiotrophic and biotrophic pathogens. Sci Rep-UK, 2020, 10(1): 14918,
DOI
|
47 |
Nie Z, Wang YH, Wu CT, Li Y, Kang GJ, Qin HD, Zeng RZ. Acyl-CoA-binding protein family members in laticifers are possibly involved in lipid and latex metabolism of Hevea brasiliensis (the Para rubber tree). BMC Genomics, 2018, 19(1): 5,
DOI
|
48 |
Ohlrogge J, Browse J. Lipid biosynthesis. Plant Cell, 1995, 7(7): 957-970
|
49 |
Ohlrogge JB, Jaworski JG. Regulation of fatty acid syn-thesis. Annu Rev Plant Physiol Plant Mol Biol, 1997, 48: 109-136,
DOI
|
50 |
Pastor S, Sethumadhavan K, Ullah AHJ, Gidda S, Cao H, Mason C, Chapital D, Scheffler B, Mullen R, Dyer J, Shockey J. Molecular properties of the class III subfamily of acyl-coenzyme A binding proteins from tung tree (Vernicia fordii). Plant Sci, 2013, 203–204: 79-88,
DOI
|
51 |
Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang HB, Wang XY, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang LF, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur-Rahman WD, Westhoff P, Mayer KF, Messing J, Rokhsar DS. The Sorghum bicolor genome and the diversification of grasses. Nature, 2009, 457(7229): 551-556,
DOI
|
52 |
Qin PF, Shang XG, Song J, Guo WZ. Genome-wide identification of Acyl-CoA-Binding Protein (ACBP) gene family and their functional analysis in abiotic stress tolerance in cotton. Acta Agron Sin, 2016, 42(11): 1577-1591,
DOI
|
53 |
Staswick PE. JAZing up jasmonate signaling. Trends Plant Sci, 2008, 13(2): 66-71,
DOI
|
54 |
Sundell D, Mannapperuma C, Netotea S, Delhomme N, Lin YC, Sjodin A, Van de Peer Y, Jansson S, Hvidsten TR, Street NR. The plant genome integrative explorer resource: PlantGenIE.org. New Phytol, 2015, 208: 1149-1156,
DOI
|
55 |
Suzui N, Nakamura S, Fujiwara T, Hayashi H, Yoneyama T. A putative acyl-CoA-binding protein is a major phloem sap protein in rice (Oryza sAtiva L.). J Exp Bot, 2006, 57: 2571-2576,
DOI
|
56 |
Takato H, Shimidzu M, Ashizawa Y, Takei H, Suzuki S. An acylCoA-binding protein from grape that is induced through ER stress confers morphological changes and disease resistance in Arabidopsis. J Plant Physiol, 2013, 170(6): 591-600,
DOI
|
57 |
Turner JG, Ellis C, Devoto A. The jasmonate signal pathway. Plant Cell, 2002, 14: S153-164,
DOI
|
58 |
Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Dejardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjarvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leple JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouze P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 2006, 313: 1596-1604,
DOI
|
59 |
Walz C, Giavalisco P, Schad M, Juenger M, Klose J, Kehr J. Proteomics of curcurbit phloem exudate reveals a network of defence proteins. Phytochemistry, 2004, 65(12): 1795-1804,
DOI
|
60 |
Wang SZ, Zhang X, Dai SJ, Li Y. Advances in research regarding the function of the ACBP family in plants. Pratacultural Science, 2019, 36(10): 2535-2548
|
61 |
Xia Y, Yu KS, Gao QM, Wilson EV, Navarre D, Kachroo P, Kachroo A. Acyl CoA binding proteins are required for cuticle formation and plant responses to microbes. Front Plant Sci, 2012, 3: 224,
DOI
|
62 |
Xiao S, Chye ML. An Arabidopsis family of six acyl-CoA-binding proteins has three cytosolic members. Plant Physiol Biochem, 2009, 47(6): 479-484,
DOI
|
63 |
Xiao S, Chye ML. New roles for acyl-CoA-binding proteins (ACBPs) in plant development, stress responses and lipid metabolism. Prog Lipid Res, 2011, 50(2): 141-151,
DOI
|
64 |
Xiao S, Chye ML. Overexpression of Arabidopsis ACBP3 enhances NPR1-dependent plant resistance to Pseudomonas syringae pv tomAto DC3000. Plant Physiol, 2011, 156(4): 2069-2081,
DOI
|
65 |
Xiao S, Li HY, Zhang JP, Chan SW, Chye ML. Arabidopsis acyl-CoA-binding proteins ACBP4 and ACBP5 are subcellularly localizedto the cytosol and ACBP4 depletion affects membrane lipid composition. Plant Mol Biol, 2008, 68(6): 571-583,
DOI
|
66 |
Xiao S, Gao W, Chen QF, Chan SW, Zheng SX, Ma J, Wang M, Welti R, Chye ML. Overexpression of Arabidopsis acyl-CoA binding protein ACBP3 promotes starvation-induced and age-dependent leaf senescence. Plant Cell, 2010, 22(6): 1463-1482,
DOI
|
67 |
Xie LJ, Yu LJ, Chen QF, Wang FZ, Huang L, Xia FN, Zhu TR, Wu JX, Yin J, Liao B, Yao N, Shu WS, Xiao S. Arabidopsis acyl-CoA-binding protein ACBP3 participates in plant response to hypoxia by modulating very-long-chain fatty acid metabolism. Plant J, 2015, 81(1): 53-67,
DOI
|
68 |
Xu WJ, Cheng H, Zhu SR, Cheng JY, Ji HH, Zhang BC, Cao SQ, Wang C, Tong GM, Zhen C, Mu LQ, Zhou YH, Cheng YX. Functional understanding of secondary cell wall cellulose synthases in Populus trichocarpa via the Cas9/gRNA-induced gene knockouts. New Phytol, 2021, 231(4): 1478-1495,
DOI
|
69 |
Xue Y, Xiao S, Kim J, Lung SC, Chen L, Tanner JA, Suh MC, Chye ML. Arabidopsis membrane-associated acyl-CoA-binding protein ACBP1 is involved in stem cuticle formation. J Exp Bot, 2014, 65(18): 5473-5483,
DOI
|
70 |
Yang WQ, Zhang W, Wang XX. Post-translational control of ABA signalling: the roles of protein phosphorylation and ubiquitination. Plant Biotechnol J, 2017, 15(1): 4-14,
DOI
|
71 |
Ye ZW, Chye ML. Plant cytosolic acyl-CoA-binding proteins. Lipids, 2016, 51(1): 1-13,
DOI
|
72 |
Yu ZP, Duan XB, Luo L, Dai SJ, Ding ZJ, Xia GM. How plant hormones mediate salt stress responses. Trends Plant Sci, 2020, 25(11): 1117-1130,
DOI
|
73 |
Yurchenko OP, Nykiforuk CL, Moloney MM, Ståhl U, Banaś A, Stymne S, Weselake RJ. A 10-kDa acyl-CoA-binding protein (ACBP) from Brassica napus enhances acyl exchange between acyl-CoA and phosphatidylcholine. Plant Biotechnol J, 2009, 7(7): 602-610,
DOI
|
74 |
Yurchenko O, Singer SD, Nykiforuk CL, Gidda S, Mullen RT, Moloney MM, Weselake RJ. Production of a Brassica napus lowmolecular mass acyl-coenzyme A-binding protein in Arabidopsis alters the acyl-coenzyme A pool and acyl composition of oil in seeds. Plant Physiol, 2014, 165(2): 550-560,
DOI
|
75 |
Zhu JT, Li WJ, Zhou YY, Pei LM, Liu JJ, Xia XY, Che RH, Li H. Molecular characterization, expression and functional analysis of acyl-CoA-binding protein gene family in maize (Zea mays). BMC Plant Biol, 2021, 21(1): 94,
DOI
|