1 |
Abdul Kayum M, Nath UK, Park JI, Biswas MK, Choi EK, Song JY, Kim HT, Nou IS. Genome-wide identification, characterization, and expression profiling of glutathione S-transferase (GST) family in pumpkin reveals likely role in cold-stress tolerance. Genes, 2018, 9(2): 84,
DOI
|
2 |
Board PG, Baker RT, Chelvanayagam G, Jermiin LS. Zeta, a novel class of glutathione transferases in a range of species from plants to humans. Biochem J, 1997, 328(3): 929-935,
DOI
|
3 |
Chan C, Lam HM. A putative lambda class glutathione S-transferase enhances plant survival under salinity stress. Plant Cell Phyiol, 2014, 55(3): 570-579,
DOI
|
4 |
Chen CJ, Chen H, Zhang Y, Thomas HR, Frank MH, He YH, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13(8): 1194-1202,
DOI
|
5 |
Chen S, Wang YC, Yu LL, Zheng T, Wang S, Yue Z, Jiang J, Kumari S, Zheng CF, Tang HB, Li J, Li YQ, Chen JJ, Zhang WB, Kuang HH, Robertson JS, Zhao PX, Li HY, Shu SQ, Yordanov YS, Huang HJ, Goodstein DM, Gai Y, Qi Q, Min JM, Xu CY, Wang SB, Qu GZ, Paterson AH, Sankoff D, Wei HR, Liu GF, Yang CP. Genome sequence and evolution of Betula platyphylla. Hortic Res, 2021, 8(1): 37,
DOI
|
6 |
Cicero LL, Madesis P, Tsaftaris A, Lo Piero AR. Tobacco plants over-expressing the sweet orange tau glutathione transferases (CsGSTUs) acquire tolerance to the diphenyl ether herbicide fluorodifen and to salt and drought stresses. Phytochemistry, 2015, 116: 69-77,
DOI
|
7 |
Conn S, Curtin C, Bézier A, Franco C, Zhang W. Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. J Exp Bot, 2008, 59(13): 3621-3634,
DOI
|
58 |
Dixon DP, Davis BG, Edwards R (2002) Functional divergence in the glutathione transferase superfamily in plants: identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. J Biol Chem 277(34):30859–30869. https://doi.org/10.1074/jbc.M202919200
|
8 |
Dmitriev AA, Krasnov GS, Rozhmina TA, Kishlyan NV, Zyablitsin AV, Sadritdinova AF, Snezhkina AV, Fedorova MS, Yurkevich OY, Muravenko OV, Bolsheva NL, Kudryavtseva AV, Melnikova NV. Glutathione S-transferases and UDP-glycosyltransferases are involved in response to aluminum stress in flax. Front Plant Sci, 2016, 7: 1920,
DOI
|
9 |
Dong YT, Li C, Zhang Y, He QL, Daud MK, Chen JH, Zhu SJ. Glutathione S-Transferase gene family in Gossypium raimondii and G arboreum: comparative genomic study and their expression under salt stress. Front Plant Sci, 2016, 7: 139,
DOI
|
10 |
Gambino G, Perrone I, Gribaudo I. A rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochem Anal, 2008, 19(6): 520-525,
DOI
|
11 |
Geng WL, Li YY, Sun DQ, Li B, Zhang PY, Chang H, Rong TQ, Liu Y, Shao JW, Liu ZY, Zhu HR, Lou YY, Wang QQ, Zhang JB. Prediction of the potential geographical distribution of Betula platyphylla Suk. in China under climate change scenarios. PLoS One, 2022, 17(3): e0262540,
DOI
|
12 |
Gullner G, Komives T, Király L, Schröder P. Glutathione S-transferase enzymes in plant-pathogen interactions. Front Plant Sci, 2018, 9: 1836,
DOI
|
13 |
Hao YC, Xu SS, Lyu ZF, Wang HW, Kong LR, Sun SL. Comparative analysis of the glutathione S-transferase gene family of four Triticeae species and transcriptome analysis of GST genes in common wheat responding to salt stress. Int J Genomics, 2021, 2021: 6289174,
DOI
|
14 |
Hu B, Zhao JT, Lai B, Qin YH, Wang HC, Hu GB. LcGST4 is an anthocyanin-related glutathione S-transferase gene in Litchi chinensis Sonn. Plant Cell Rep, 2016, 35(4): 831-843,
DOI
|
15 |
Islam S, Rahman IA, Islam T, Ghosh A. Genome-wide identification and expression analysis of glutathione S-transferase gene family in tomato: gaining an insight to their physiological and stress-specific roles. PLoS ONE, 2017, 12(11): e0187504,
DOI
|
16 |
Jain M, Ghanashyam C, Bhattacharjee A. Comprehensive expression analysis suggests overlapping and specific roles of rice glutathione S-transferase genes during development and stress responses. BMC Genomics, 2010, 11: 73,
DOI
|
17 |
Jeffares DC, Penkett CJ, Bähler J. Rapidly regulated genes are intron poor. Trends Genet, 2008, 24(8): 375-378,
DOI
|
18 |
Jha B, Sharma A, Mishra A. Expression of SbGSTU (tau class glutathione S-transferase) gene isolated from Salicornia brachiata in tobacco for salt tolerance. Mol Biol Rep, 2011, 38(7): 4823-4832,
DOI
|
19 |
Ji W, Zhu YM, Li Y, Yang L, Zhao XW, Cai H, Bai X. Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnol Lett, 2010, 32(8): 1173-1179,
DOI
|
20 |
Jia JS, Ge N, Wang QY, Zhao LT, Chen C, Chen JW. Genome-wide identification and characterization of members of the LEA gene family in Panax notoginseng and their transcriptional responses to dehydration of recalcitrant seeds. BMC Genomics, 2023, 24(1): 126,
DOI
|
21 |
Jiang SH, Chen M, He NB, Chen XL, Wang N, Sun QG, Zhang TL, Xu HF, Fang HC, Wang YC, Zhang ZY, Wu SJ, Chen XS. MdGSTF6, activated by MdMYB1, plays an essential role in anthocyanin accumulation in apple. Hortic Res, 2019, 6: 40,
DOI
|
22 |
Jing GH, Hu TM, Liu J, Cheng JM, Li W. Biomass estimation, nutrient accumulation, and stoichiometric characteristics of dominant tree species in the semi-arid region on the Loess Plateau of China. Sustainability, 2020, 12(1): 339,
DOI
|
23 |
Lallement PA, Brouwer B, Keech O, Hecker A, Rouhier N. The still mysterious roles of cysteine-containing glutathione transferases in plants. Front Pharmacol, 2014, 5: 192,
DOI
|
24 |
Li B, Zhang XZ, Duan RW, Han CH, Yang J, Wang L, Wang SK, Su YL, Wang L, Dong YF, Xue HB. Genomic analysis of the glutathione S-transferase family in pear (Pyrus communis) and functional identification of PcGST57 in anthocyanin accumulation. Int J Mol Sci, 2022, 23(2): 746,
DOI
|
25 |
Licciardello C, D’Agostino N, Traini A, Recupero GR, Frusciante L, Chiusano ML. Characterization of the glutathione S-transferase gene family through ESTs and expression analyses within common and pigmented cultivars of Citrus sinensis (L.) Osbeck. BMC Plant Biol, 2014, 14: 39,
DOI
|
26 |
Liu YF, Qi YW, Zhang AL, Wu HX, Liu ZD, Ren XL. Molecular cloning and functional characterization of AcGST1, an anthocyanin-related glutathione S-transferase gene in kiwifruit (Actinidia chinensis). Plant Mol Biol, 2019, 100(4–5): 451-465,
DOI
|
27 |
Liu YJ, Jiang H, Zhao Y, Li X, Dai XL, Zhuang JH, Zhu MQ, Jiang XL, Wang PQ, Gao LP, Xia T. Three Camellia sinensis glutathione S-transferases are involved in the storage of anthocyanins, flavonols, and proanthocyanidins. Planta, 2019, 250(4): 1163-1175,
DOI
|
28 |
Liu LB, Zheng SX, Yang DK, Zheng J. Genome-wide in silico identification of glutathione S-transferase (GST) gene family members in fig (Ficus carica L.) and expression characteristics during fruit color development. PeerJ, 2023, 11: e14406,
DOI
|
29 |
Lyu ZY, Yun RX, Wu T, Ma YJ, Chen ZJ, Jin YT, Li JX. Altitudinal differentiation in the radial growth of Betula platyphylla and its response to climate in cold temperate forest a case of Oakley mountain Northeast China. Ying Yong Sheng Tai Xue Bao, 2020, 31(6): 1889-1897,
DOI
|
30 |
Marrs KA. The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol, 1996, 47: 127-158,
DOI
|
31 |
McGonigle B, Keeler SJ, Lau SM, Koeppe MK, O’Keefe DP. A genomics approach to the comprehensive analysis of the glutathione S-transferase gene family in soybean and maize. Plant Physiol, 2000, 124(3): 1105-1120,
DOI
|
62 |
Mohsenzadeh S, Esmaeili M, Moosavi F, Shahrtash M, Saffari B, Mohabatkar H (2011) Plant glutathione S-transferase classification, structure and evolution. Afr J Biotechnol 10:8160–8165. https://doi.org/10.5897/AJB11.1024
|
32 |
Mueller LA, Goodman CD, Silady RA, Walbot V. AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol, 2000, 123(4): 1561-1570,
DOI
|
33 |
Munyampundu JP, Xu YP, Cai XZ. Phi class of glutathione S-transferase gene superfamily widely exists in nonplant taxonomic groups. Evol Bioinform Online, 2016, 12: 59-71,
DOI
|
34 |
Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J, 2003, 34(2): 137-148,
DOI
|
35 |
Nianiou-Obeidat I, Madesis P, Kissoudis C, Voulgari G, Chronopoulou E, Tsaftaris A, Labrou NE. Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications. Plant Cell Rep, 2017, 36(6): 791-805,
DOI
|
60 |
|
61 |
Olarewaju O, Ortiz P, Chowdhury W, Chatterjee I, Kinzy T (2004) The translation elongation factor eEF1B plays a role in the oxidative stress response pathway. RNA Biol 1:89–94. https://doi.org/10.4161/rna.1.2.1033
|
59 |
|
36 |
Qi XL, Liu CL, Song LL, Dong YX, Chen L, Li M. A sweet cherry glutathione S-transferase gene, PavGST1, plays a central role in fruit skin coloration. Cells, 2022, 11(7): 1170,
DOI
|
37 |
Qiao LY, Zhang XJ, Han X, Zhang L, Li X, Zhan HX, Ma J, Luo PG, Zhang WP, Cui L, Li XY, Chang ZJ. A genome-wide analysis of the auxin/indole-3-acetic acid gene family in hexaploid bread wheat (Triticum aestivum L.). Front Plant Sci, 2015, 6: 770,
DOI
|
38 |
Sappl PG, Carroll AJ, Clifton R, Lister R, Whelan J, Harvey Millar A, Singh KB. The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress. Plant J, 2009, 58(1): 53-68,
DOI
|
40 |
Sharma R, Sahoo A, Devendran R, Jain M. Over-expression of a rice tau class glutathione s-transferase gene improves tolerance to salinity and oxidative stresses in Arabidopsis. PLoS ONE, 2014, 9(3): e92900,
DOI
|
41 |
Shehu D, Abdullahi N, Alias Z. Cytosolic glutathione S-transferase in bacteria a review. Pol J Environ Stud, 2018, 28(2): 515-528,
DOI
|
42 |
Simarani K, Yusoff WHAC, Alias Z. Purification of glutathione Transferases (GSTs) from identified Rhizospheric bacteria. Sains Malays, 2016, 45(7): 1057-1062
|
43 |
Sun Y, Li H, Huang JR. Arabidopsis TT19 functions as a carrier to transport anthocyanin from the cytosol to tonoplasts. Mol Plant, 2012, 5(2): 387-400,
DOI
|
44 |
Sylvestre-Gonon E, Law SR, Schwartz M, Robe K, Keech O, Didierjean C, Dubos C, Rouhier N, Hecker A. Functional, structural and biochemical features of plant serinyl-glutathione transferases. Front Plant Sci, 2019, 10: 608,
DOI
|
45 |
Vijayakumar H, Thamilarasan SK, Shanmugam A, Natarajan S, Jung HJ, Park JI, Kim H, Chung MY, Nou IS. Glutathione transferases superfamily: cold-inducible expression of distinct GST genes in Brassica oleracea. Int J Mol Sci, 2016, 17(8): 1211,
DOI
|
46 |
Wang Z, Huang SZ, Jia CH, Liu JH, Zhang JB, Xu BY, Jin ZQ. Molecular cloning and expression of five glutathione S-transferase (GST) genes from banana (Musa acuminata L. AAA group, cv. Cavendish). Plant Cell Rep, 2013, 32(9): 1373-1380,
DOI
|
47 |
Wang RB, Ma JF, Zhang Q, Wu CL, Zhao HY, Wu YN, Yang GX, He GY. Genome-wide identification and expression profiling of glutathione transferase gene family under multiple stresses and hormone treatments in wheat (Triticum aestivum L.). BMC Genomics, 2019, 20(1): 986,
DOI
|
48 |
Wei K, Wang LY, Zhang YZ, Ruan L, Li HL, Wu LY, Xu LY, Zhang CC, Zhou XG, Cheng H, Edwards R. A coupled role for CsMYB75 and CsGSTF1 in anthocyanin hyperaccumulation in purple tea. Plant J, 2019, 97(5): 825-840,
DOI
|
63 |
Wu J, Lv S, Zhao L, Gao T, Yu C, Hu J, Ma F (2023) Advances in the study of the function and mechanism of the action of flavonoids in plants under environmental stresses. Planta 257(6):108. https://doi.org/10.1007/s00425-023-04136-w
|
49 |
Xu GX, Guo CC, Shan HY, Kong HZ. Divergence of duplicate genes in exon-intron structure. Proc Natl Acad Sci USA, 2012, 109(4): 1187-1192,
DOI
|
50 |
Yaish MW, El-Kereamy A, Zhu T, Beatty PH, Good AG, Bi YM, Rothstein SJ. The APETALA-2-like transcription factor OsAP2-39 controls key interactions between abscisic acid and gibberellin in rice. PLoS Genet, 2010, 6(9): e1001098,
DOI
|
51 |
Yamazaki M, Shibata M, Nishiyama Y, Springob K, Kitayama M, Shimada N, Aoki T, Ayabe SI, Saito K. Differential gene expression profiles of red and green forms of Perilla frutescens leading to comprehensive identification of anthocyanin biosynthetic genes. FEBS J, 2008, 275(13): 3494-3502,
DOI
|
52 |
Yang GY, Chen SW, Li DP, Gao XQ, Su LY, Peng SB, Zhai MZ. Multiple transcriptional regulation of walnut JrGSTTau1 gene in response to osmotic stress. Physiol Plant, 2019, 166(3): 748-761,
DOI
|
53 |
Zhang T, Liu L, Jia YL, Zhi JR, Yue WB, Li DY, Zeng G. Induced resistance combined with RNA interference attenuates the counteradaptation of the western flower Thrips. Int J Mol Sci, 2022, 23(18): 10886,
DOI
|
54 |
Zhang Y, Ming RH, Khan M, Wang Y, Dahro B, Xiao W, Li CL, Liu JH. ERF9 of Poncirus trifoliata (L.) Raf undergoes feedback regulation by ethylene and modulates cold tolerance via regulating a glutathione S-transferase U17 gene. Plant Biotechnol J, 2022, 20(1): 183-200,
DOI
|
55 |
Zhao Y, Dong WQ, Wang K, Zhang B, Allan AC, Kui LW, Chen KS, Xu CJ. Differential sensitivity of fruit pigmentation to ultraviolet light between two peach cultivars. Front Plant Sci, 2017, 8: 1552,
DOI
|
56 |
Zhao Y, Dong WQ, Zhu YC, Allan AC, Kui LW, Xu CJ. PpGST1, an anthocyanin-related glutathione S-transferase gene, is essential for fruit coloration in peach. Plant Biotechnol J, 2020, 18(5): 1284-1295,
DOI
|