The interaction between arbuscular mycorrhizal(AM) fungi and soil bacteria plays a crucial role in plant phosphorus acquisition. This review systematically elucidated the impact of AM fungi-bacteria interactions on soil phosphorus cycling and their regulatory mechanisms. AM fungal hyphal exudates, including sugars, carboxylates, and amino acids, provide carbon sources for bacteria and specifically recruit phosphate-solubilizing bacteria, while the hyphae serve as "mobile bridges" to facilitate bacterial migration. Besides, AM fungi can modulate the structure and function of the hyphosphere microbiome, enriching functional bacteria carrying the phoD gene, enhancing phosphatase activity, and promoting organic phosphorus mineralization. Based on these mechanisms, strategies such as regulating soil C:P ratio and supplementing hyphal exudate components can regulate AM fungi-bacteria interactions and improve soil phosphorus utilization efficiency.