Amasino, R., 2010. Seasonal and developmental timing of flowering. Plant J. 61, 1001-1013. Blumel, M., Dally, N., Jung, C., 2015. Flowering time regulation in crops-what did we learn from Arabidopsis? Curr. Opin. Biotechnol. 32, 121-129. Calderwood, A., Lloyd, A., Hepworth, J., et al., 2021. Total FLC transcript dynamics from divergent paralogue expression explains flowering diversity in Brassica napus. New Phytol. 229, 3534-3548. Davey, V.M., 1939. Hybridization in brassicae and the occasional contamination of seed stocks. Ann. Appl. Biol. 26, 634-636. Guedes, J.D., Bocinsky, R.K., Butler, E.E., 2015. Comment on "Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 BP". Science 348, 872. He, Y., Chen, T., Zeng, X. 2020. Genetic and epigenetic understanding of seasonal timing of flowering. Plant Commun. 1, 100008. Heenan, P.B., Dawson, M.I., 2005. Spontaneous hybrids between naturalised populations of pak choi (Brassica rapa var. chinensis) and wild turnip (B. rapa var. oleifera) from near Ashburton, Canterbury, New Zealand. N. Z. J. Bot. 43, 817-824. Heenan, P.B., Fitzjohn, R.G., Dawson, M.I., 2004. Diversity of Brassica (Brassicaceae) species naturalised in Canterbury, New Zealand. N. Z. J. Bot. 42, 815-832. Hepworth, J., Antoniou-Kourounioti, R.L., Berggren, K., et al., 2020. Natural variation in autumn FLC levels, rather than epigenetic silencing, aligns vernalization to different climates. elife. 4, e06620. Hepworth, J., Dean, C., 2015. Flowering Locus C’s Lessons: conserved chromatin switches underpinning developmental timing and adaptation. New Phytol. 168, 1237-1245. Jung, C., Muller, A.E., 2009. Flowering time control and applications in plant breeding. Trends Plant Sci. 14 563-573. Ma, L., Zhang, C., Zhang, B., et al., 2021. A nonS-locus F-box gene breaks self-incompatibility in diploid potatoes. Nat. Commun. 12, 4142. Michaels, S.D., Amasino, R.M., 1999. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11, 949-956. Michaels, S.D., He, Y.H., Scortecci, K.C., et al., 2003. Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 100, 10102-10107. Osborn, T.C., 2004. The contribution of polyploidy to variation in Brassica species. Physiol. Plant. 121, 531-536. Purugganan, M.D., Fuller, D.Q., 2009. The nature of selection during plant domestication. Nature 457, 843-848. Qi, X.S., An, H., Ragsdale, A.P., et al., 2017. Genomic inferences of domestication events are corroborated by written records in Brassica rapa. Mol. Ecol. 26, 3373-3388. Qiu, J., Jia, L., Wu, D.Y., et al., 2020. Diverse genetic mechanisms underlie worldwide convergent rice feralization. Genome Biol. 21, 70. Ridge, S., Brown, P.H., Hecht, V., et al., 2015. The role of BoFLC2 in cauliflower (Brassica oleracea var. botrytis L.) reproductive development. J. Exp. Bot. 66, 125-135. Searle, I., He, Y., Turck, F., et al., 2006. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev. 20, 898-912. Shindo, C., Aranzana, M.J., Lister, C., et al., 2005. Role of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of Arabidopsis. Plant Physiol. 138, 1163-1173. Shindo, C., Lister, C., Crevillen, P., et al., 2006. Variation in the epigenetic silencing of FLC contributes to natural variation in Arabidopsis vernalization response. Genes Dev. 20, 3079-3083. Tudor, E.H., Jones, D.M., He, Z.S., et al., 2020. QTL-seq identifies BnaFT.A02and BnaFLC.A02 as candidates for variation in vernalization requirement and response in winter oilseed rape (Brassica napus). Plant Biotechnol. J. 18, 2466-2481. Wilkinson, M.J., Davenport, I.J., Charters, Y.M., et al., 2000. A direct regional scale estimate of transgene movement from genetically modified oilseed rape to its wild progenitors. Mol. Ecol. 9, 983-991. Wilkinson, M.J., Elliott, L.J., Allainguillaume, J., et al., 2003. Hybridization between Brassica napus and B. rapa on a national scale in the United Kingdom. Science 302, 457-459. Wu, J., Wei, K.Y., Cheng, F., et al., 2012. A naturally occurring InDel variation in BraA.FLC.b (BrFLC2) associated with flowering time variation in Brassica rapa. BMC Plant Biol. 12, 151. Yin, S., Wan, M., Guo, C.C., et al., 2020. Transposon insertions within alleles of BnaFLC.A10 and BnaFLC.A2 are associated with seasonal crop type in rapeseed. J. Exp. Bot. 71, 4729-4741. Zhang, N.W., Zhao, J.J., Lens, F., et al., 2014. Morphology, carbohydrate composition and vernalization response in a genetically diverse collection of Asian and European turnips (Brassica rapa subsp. rapa). PLoS One 9, e114241. Zhao, J.J., Kulkarni, V., Liu, N.N., et al., 2010. BrFLC2 (FLOWERING LOCUS C) as a candidate gene for a vernalization response QTL in Brassica rapa. J. Exp. Bot. 61, 1817-1825. Zheng, Y., Gao, Z.A., Luo, L.D., et al., 2021. Divergence of the genetic contribution of FRIGIDA homologues in regulating the flowering time in Brassica rapa ssp. rapa. Gene 796, 145790. Zheng, Y., Luo, L.D., Liu, Y.Y., et al., 2018. Effect of vernalization on tuberization and flowering in the Tibetan turnip is associated with changes in the expression of FLC homologues. Plant Divers. 40, 50-56. |