Plant Diversity ›› 2025, Vol. 47 ›› Issue (06): 931-943.DOI: 10.1016/j.pld.2025.06.010
• Articles • Previous Articles Next Articles
Xiaochun Shua,b,c, Ruisen Lua,b,c, Pat Heslop-Harrisond,e, Trude Schwarzacherd,e, Zhong Wanga,b,c, Yalong Qina,b,c, Ning Wanga,b,c, Fengjiao Zhanga,b,c
Received:2024-12-13
Revised:2025-06-23
Online:2026-01-13
Published:2026-01-13
Contact:
Fengjiao Zhang,E-mail:fengjiao@cnbg.net
Supported by:Xiaochun Shua,b,c, Ruisen Lua,b,c, Pat Heslop-Harrisond,e, Trude Schwarzacherd,e, Zhong Wanga,b,c, Yalong Qina,b,c, Ning Wanga,b,c, Fengjiao Zhanga,b,c
通讯作者:
Fengjiao Zhang,E-mail:fengjiao@cnbg.net
作者简介:Xiaochun Shu,E-mail:islbe@163.com;Ruisen Lu,E-mail:lurs@cnbg.net;Pat Heslop-Harrison,E-mail:phh4@le.ac.uk;Trude Schwarzacher,E-mail:ts32@leicester.ac.uk;Zhong Wang,E-mail:wangzhong19@163.com;Yalong Qin,E-mail:610908304@qq.com;Ning Wang,E-mail:ningw813@163.com
基金资助:Xiaochun Shu, Ruisen Lu, Pat Heslop-Harrison, Trude Schwarzacher, Zhong Wang, Yalong Qin, Ning Wang, Fengjiao Zhang. Unraveling the evolutionary complexity of Lycoris: Insights into chromosomal variation, genome size, and phylogenetic relationships[J]. Plant Diversity, 2025, 47(06): 931-943.
Xiaochun Shu, Ruisen Lu, Pat Heslop-Harrison, Trude Schwarzacher, Zhong Wang, Yalong Qin, Ning Wang, Fengjiao Zhang. Unraveling the evolutionary complexity of Lycoris: Insights into chromosomal variation, genome size, and phylogenetic relationships[J]. Plant Diversity, 2025, 47(06): 931-943.
| Babin, C.H., Bell, C.D., 2022. Evolution of chromosome number in wild onions (Allium, Amaryllidaceae). Syst. Bot. 47, 335-346. Bennett, M., Leitch, I., 2005. Genome size evolution in plants. The evolution of the genome, Gregory. Elsevier Academic Press, pp. 89-162. Biscotti, M., Olmo, E., Heslop-Harrison, J., 2015. Repetitive DNA in eukaryotic genomes. Chromosome Res. 23, 415-420. Bolger, A., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114. Butlin, R., Galindo, J., Grahame, J., 2008. Sympatric, parapatric or allopatric: the most important way to classify speciation? Phil. Trans. R. Soc. B -Biol. Sci. 363, 2997-3007. Coyne, J. 2007. Sympatric speciation. Curr. Biol. 17, R787-R788. Dolezel, J., Bartos, J., 2005. Plant DNA flow cytometry and estimation of nuclear genome size. Ann. Bot. 95, 99-110. Dolezel, J., Greilhuber, J., Suda, J., 2007. Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2, 2233-2244. Du, Y., Bi, Y., Zhang, M., et al., 2017. Genome size diversity in Lilium (Liliaceae) is correlated with karyotype and environmental traits. Front. Plant Sci. 8, 1303. Fujiwara, T., Liu, H., Meza-Torres, E., et al., 2023. Evolution of genome space occupation in ferns: linking genome diversity and species richness. Ann. Bot. 131, 59-70. Garcia, N., Folk, R.A., Meerow, A.W., et al., 2017. Deep reticulation and incomplete lineage sorting obscure the diploid phylogeny of rain-lilies and allies (Amaryllidaceae tribe Hippeastreae). Mol. Phylogenet. Evol. 111, 231-247. Heslop-Harrison, J., Schwarzacher, T., 2011. Organisation of the plant genome in chromosomes. Plant J. 66, 18-33. Heslop-Harrison, J., Schwarzacher, T., Liu, Q., 2023. Polyploidy: its consequences and enabling role in plant diversification and evolution. Ann. Bot. 131, 1-10. Hsu, P., Huang, S., Yu, Z., et al., 1984. Karyotype analysis in Lycoris rosea Traub et Moldenke. J. Syst. Evol. 22, 46. Hsu, P., Kurita S., Yu Z., et al., 1994. Synopsis of the genus Lycoris (Amaryllidaceae). SIDA 16, 301-331. Huang, X., Dong, M., Wang, X., et al., 2011. Chromosome report of Lycoris Herb. (Amaryllidaceae). J. Syst. Evol. 49, 164. Jang, J., Baasanmunkh, S., Nyamgerel, N., et al., 2024. Flower morphology of Allium (Amaryllidaceae) and its systematic significance. Plant Divers. 46, 3-27. Ji, Z., Meerow, A., 2000. Lycoris. Flora of China 24, 266-269. Jin, J., Yu, W., Yang, J., et al. 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 1-31. Kato, A., Vega, J., Han, F., et al., 2005. Advances in plant chromosome identification and cytogenetic techniques. Curr. Opin. Plant Biol. 8, 148-154. Katoh, K., Standley, D. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772-780. Kevin, D.Q. 2007. Species concepts and species delimitation. Syst. Biol. 56, 879-886. Kurita, S., 1986. Variation and evolution in the karyotype of Lycoris, Amaryllidaceae I. General karyomorphological characteristics of the genus. Cytologia 51, 803-815. Kurita, S., 1987a. Variation and evolution on the karyotype of Lycoris, Amaryllidaceae II. Karyotype analysis of ten taxa among which seven are native in China. Cytologia 52, 19-40. Kurita, S., 1987b. Variation and evolution in the karyotype of Lycoris, Amaryllidaceae III. Intraspecific variation in the karyotype of L. traubii Hayward. Cytologia 52, 117-128. Kurita, S., 1988. Variation and evolution in the karyotype of Lycoris, Amaryllidaceae VI. Intrapopulational and/or intraspecific variation in the karyotype of L. sanguinea Max. var. kiushiana and L. sanguinea Max. var. koreana (Nakai) Koyama. Cytologia 53, 307-321. Kurita, S., Hsu, P., 1996. Hybrid complexes in Lycoris Amaryllidaceae. Am. J. Bot. 83, 207. Leitch, I.J., Leitch, A.R., 2013. Genome size diversity and evolution in land plants. Plant Genome Diversity 2, Physical Structure, Behaviour and Evolution of Plant Genomes. Springer-Verlag; Wien, Austria, pp. 307-322. Leong-Skornickova, J., Sida, O., Jarolimova, V., et al., 2007. Chromosome numbers and genome size variation in Indian species of Curcuma (Zingiberaceae). Ann. Bot. 100, 505-526. Li, Q., Li, Z., Cai, Y., et al., 2022. Lycoris chunxiaoensis (Amaryllidaceae), a new species from Zhejiang, China, Ann. Bot. Fenn. 59, 53-56. Liu, K., Meng, W., Zheng, L., et al., 2019a. Cytogeography and chromosomal variation of the endemic East Asian herb Lycoris radiata. Ecol. Evol. 9, 6849-6859. Liu, K., Zhou, S., Huang, Y., et al., 2012. Chromosomal variation and evolution in Lycoris (Amaryllidaceae) I. Intraspecific variation in the karyotype of Lycoris chinensis Traub. Plant Syst. Evol. 298, 1493-1502. Liu, Q., Li, X., Zhou, X., et al., 2019b. The repetitive DNA landscape in Avena (Poaceae): chromosome and genome evolution defined by major repeat classes in whole-genome sequence reads. BMC Plant Biol. 19, 1-17. Liu, Y., Hsu, P. 1989. A study on karyotypes of the genus Lycoris. J. Syst. Evol. 27, 257-264. Liu, Y., Wang, S., Li, L., et al., 2022. The Cycas genome and the early evolution of seed plants. Nat. Plants 8, 389-401. Lou, Y., Ma, D., Jin, Z., et al., 2022. Phylogenomic and morphological evidence reveal a new species of spider lily, Lycoris longifolia (Amaryllidaceae) from China. PhytoKeys 210, 79. Ma, B., Tarumoto, I., Morikawa, T. 2000. Cytological studies on selfed plants and interspecific crosses produced in four species of genus Lycoris (Amaryllidaceae). Sci. Rep. Coll. Agric. Osaka Pref. Univ. 52, 13-18. Mandakova, T., Lysak, M.A., 2018. Post-polyploid diploidization and diversification through dysploid changes. Curr. Opin. Plant Biol. 42, 55-65. Marques, I., Nieto Feliner, G., Martins-Loucao, M., et al., 2012. Genome size and base composition variation in natural and experimental Narcissus (Amaryllidaceae) hybrids. Ann. Bot. 109, 257-264. Mayrose, I., Lysak, M.A., 2021. The evolution of chromosome numbers: mechanistic models and experimental approaches. Genome Biol. Evol. 13, evaa220. Meng, W., Zhang, D., Qin, H., et al., 2018a. Hybrid origin of Lycoris shaanxiensis revealed by karyotype survey. Cytologia 83, 133-136. Meng, W., Zheng, L., Shao, J., et al., 2018b. A new natural allotriploid, Lycoris×hubeiensis hybr. nov. (Amaryllidaceae), identified by morphological, karyological and molecular data. Nord. J. Bot. 36. Nevo, E., 2001. Evolution of genome-phenome diversity under environmental stress. Proc. Natl. Acad. Sci. U.S.A. 98, 6233-6240. Ng, C., Lee, S., Tnah, L., et al., 2016. Genome size variation and evolution in Dipterocarpaceae. Plant Ecol. Divers. 9, 437-446. Nishikawa, K., Furuta, Y., Endo, H., 1979. Consideration of the chromosome evolution on the basis of nuclear DNA content and total chromosome length in Lycoris. Jpn. J. Genet. 54, 387-396. Ozkan, H., Levy, A., Feldman, M., 2001. Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell 13, 1735-1747. Pandit, M.K., White, S.M., Pocock, M.J. 2014. The contrasting effects of genome size, chromosome number and ploidy level on plant invasiveness: a global analysis. New Phytol. 203, 697-703. Pellicer, J., Hidalgo, O., Walker, J., et al., 2017. Genome size dynamics in tribe Gilliesieae (Amaryllidaceae, subfamily Allioideae) in the context of polyploidy and unusual incidence of Robertsonian translocations. Bot. J. Linn. Soc. 184, 16-31. Pessoa, E.M., Nollet, F., Magalhaes, R.F., et al., 2022. Nuclear-plastid discordance indicates past introgression in Epidendrum species (Laeliinae: Orchidaceae) with highly variable chromosome numbers. Bot. J. Linn. Soc. 199, 357-371. Petrov, D., 2001. Evolution of genome size: new approaches to an old problem. Trends Genet. 17, 23-28. Plackova, K., Bures, P., Lysak, M.A., et al., 2024. Centromere drive may propel the evolution of chromosome and genome size in plants. Ann. Bot. 134, 1067-1076. Poggio, L., Gonzalez, G., Naranjo, C., 2007. Chromosome studies in Hippeastrum (Amaryllidaceae): variation in genome size. Bot. J. Linn. Soc. 155, 171-178. Qian, H., Zhang, J., Jiang, M. 2023. Global patterns of taxonomic and phylogenetic diversity of flowering plants: Biodiversity hotspots and coldspots. Plant Divers. 45, 265-271. Quan, M., Jiang, X., Xiao, L., et al., 2024. Reciprocal natural hybridization between Lycoris aurea and Lycoris radiata (Amaryllidaceae) identified by morphological, karyotypic and chloroplast genomic data. BMC Plant Biol. 24, 14. Quan, M., Ou, L., She, C., 2013. A new species of Lycoris (Amaryllidaceae) from Hunan, China. Novon 22, 307-310. Sanchez-Jimenez, I., Hidalgo, O., Canela, M., et al., 2012. Genome size and chromosome number in Echinops (Asteraceae, Cardueae) in the Aegean and Balkan regions: technical aspects of nuclear DNA amount assessment and genome evolution in a phylogenetic frame. Plant Syst. Evol. 298, 1085-1099. Schulte, K., Barfuss, M.H., Zizka, G. 2009. Phylogeny of Bromelioideae (Bromeliaceae) inferred from nuclear and plastid DNA loci reveals the evolution of the tank habit within the subfamily. Mol. Phylogenet. Evol. 51, 327-339. Schwarzacher, T., 2016. Preparation and fluorescent analysis of plant metaphase chromosomes, Plant Cell Division. Springer, pp. 87-103. Schwarzacher, T., Heslop-Harrison, P., 2000. Practical in situ hybridization. BIOS Scientific Publishers Ltd. Shi, S., Qiu, Y., Li, E., et al., 2006. Phylogenetic relationships and possible hybrid origin of Lycoris species (Amaryllidaceae) revealed by ITS sequences. Biochem. Genet. 44, 198-208. Shi, S., Sun, Y., Wei, L., et al., 2014. Plastid DNA sequence data help to clarify phylogenetic relationships and reticulate evolution in Lycoris (Amaryllidaceae). Bot. J. Linn. Soc. 176, 115-126. Soltis, P., Marchant, D., Van de Peer, Y., et al., 2015. Polyploidy and genome evolution in plants. Curr. Opin. Genet. Dev. 35, 119-125. Stace, C., 2000. Cytology and cytogenetics as a fundamental taxonomic resource for the 20th and 21st centuries. Taxon 49, 451-477. Stamatakis, A. 2014. RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312-1313. Sun, P., Lu, Z., Wang, Z., et al., 2024. Subgenome-aware analyses reveal the genomic consequences of ancient allopolyploid hybridizations throughout the cotton family. Proc. Natl. Acad. Sci. U.S.A. 121, e2313921121. Tae, K., Ko, S., 1995. A taxonomic study of the genus Lycoris (Amaryllidaceae) based on morphological characters. Trop. Med. Int. Health 9, 41-46. Uncu, A., Uncu, A., Celik, I., et al., 2015. A primer to molecular phylogenetic analysis in plants. Crit. Rev. Plant Sci. 34, 454-468. Van de Peer, Y., Mizrachi, E., Marchal, K. 2017. The evolutionary significance of polyploidy. Nat. Rev. Genet. 18, 411-424. Wang, J., Sun, L., Zhu, H., et al., 2022. Aneuploidy promotes intraspecific diversification of the endemic East Asian herb Lycoris aurea complex. Front. Plant Sci. 13, 955724. Wang, Z., Shu, X., Wang, N., et al., 2023. ‘E Huang Xiao Ran’: A New Ornamental Lycoris straminea Cultivar. HortScience 58, 105-106. Zhang, F., Chen, F., Schwarzacher, T., et al., 2023. The nature and genomic landscape of repetitive DNA classes in Chrysanthemum nankingense shows recent genomic changes. Ann. Bot. 131, 215-228. Zhang, F., Wang, T., Shu, X., et al., 2020. Complete chloroplast genomes and comparative analyses of L. chinensis, L. anhuiensis, and L. aurea (Amaryllidaceae). Int. J. Mol. Sci. 21, 5729. Zhang, F., Wang, N., Cheng, G., et al., 2021a. Comparative chloroplast genomes of four Lycoris species (Amaryllidaceae) provides new insight into interspecific relationship and phylogeny. Biology 10, 715. Zhang, G., Ma, H. 2024. Nuclear phylogenomics of angiosperms and insights into their relationships and evolution. J. Integr. Plant Biol. 66: 546-578. Zhang, S., Huang, Y., Zhang, P., et al., 2021b. Lycoris wulingensis, a dwarf new species of Amaryllidaceae from Hunan, China. PhytoKeys 177, 1. Zhang, S., Wang, H., Hu, Y., et al., 2022a. Lycoris insularis (Amaryllidaceae), a new species from eastern China revealed by morphological and molecular evidence. PhytoKeys 206, 153-165. Zhang, S., Hu, Y., Wang, H., et al., 2022b. Over 30 Years of misidentification: A new nothospecies Lycoris×jinzheniae (Amaryllidaceae) in eastern China, based on molecular, morphological, and karyotypic evidence. Plants 11, 1730. Zhao, Y., Chen, Y., Drew, B. et al., 2024. Molecular phylogeny and taxonomy of Phlomoides (Lamiaceae subfamily Lamioideae) in China: Insights from molecular and morphological data. Plant Divers. 46, 462-475. Zhou, N., Miao, K., Liu, C., et al., 2024. Historical biogeography and evolutionary diversification of Lilium (Liliaceae): New insights from plastome phylogenomics. Plant Divers. 462, 219-228. Zonneveld, B., Duncan, G., 2006. Genome size for the species of Nerine Herb. (Amaryllidaceae) and its evident correlation with growth cycle, leaf width and other morphological characters. Plant Syst. Evol. 257, 251-260. |
| [1] | Zhao-Yang Jing (景昭阳), Ren-Gang Zhang (张仁纲), Yang Liu (刘阳), Ke-Guang Cheng (程可光), De-Tuan Liu (刘德团), Heng Shu (舒恒), Jiali Kong (孔佳莉), Zhong-Hua Liu (刘忠华), Yong-Peng Ma (马永鹏), Ping-Li Liu (刘平丽). Genomic insights into the evolutionary history and conservation of the living fossil Tetracentron sinense [J]. Plant Diversity, 2025, 47(05): 759-771. |
| [2] | Wei Gu, Ting Zhang, Shui-Yin Liu, Qin Tian, Chen-Xuan Yang, Qing Lu, Xiao-Gang Fu, Heather R. Kates, Gregory W. Stull, Pamela S. Soltis, Douglas E. Soltis, Ryan A. Folk, Robert P. Guralnick, De-Zhu Li, Ting-Shuang Yi. Phylogenomics, reticulation, and biogeographical history of Elaeagnaceae [J]. Plant Diversity, 2024, 46(06): 683-697. |
| [3] | Hui Feng, Achyut Kumar Banerjee, Wuxia Guo, Yang Yuan, Fuyuan Duan, Wei Lun Ng, Xuming Zhao, Yuting Liu, Chunmei Li, Ying Liu, Linfeng Li, Yelin Huang. Origin and evolution of a new tetraploid mangrove species in an intertidal zone [J]. Plant Diversity, 2024, 46(04): 476-490. |
| [4] | Yue Zhao, Ya-Ping Chen, Bryan T. Drew, Fei Zhao, Maryam Almasi, Orzimat T. Turginov, Jin-Fei Xiao, Abdul G. Karimi, Yasaman Salmaki, Xiang-Qin Yu, Chun-Lei Xiang. Molecular phylogeny and taxonomy of Phlomoides (Lamiaceae subfamily Lamioideae) in China: Insights from molecular and morphological data [J]. Plant Diversity, 2024, 46(04): 462-475. |
| [5] | Yajun Wang, Hanchen Wang, Chao Ye, Zhiping Wang, Chongbo Ma, Dongliang Lin, Xiaohua Jin. Progress in systematics and biogeography of Orchidaceae [J]. Plant Diversity, 2024, 46(04): 425-434. |
| [6] | Ya-Dong Qie, Qi-Wei Zhang, Scott A. M. McAdam, Kun-Fang Cao. Stomatal dynamics are regulated by leaf hydraulic traits and guard cell anatomy in nine true mangrove species [J]. Plant Diversity, 2024, 46(03): 395-405. |
| [7] | Xiang-Zhou Hu, Cen Guo, Sheng-Yuan Qin, De-Zhu Li, Zhen-Hua Guo. Deep genome skimming reveals the hybrid origin of Pseudosasa gracilis (Poaceae: Bambusoideae) [J]. Plant Diversity, 2024, 46(03): 344-352. |
| [8] | Jian-Feng Huang, Clive T. Darwell, Yan-Qiong Peng. Enhanced and asymmetric signatures of hybridization at climatic margins: Evidence from closely related dioecious fig species [J]. Plant Diversity, 2024, 46(02): 181-193. |
| [9] | Yumeng Ren, Lushui Zhang, Xuchen Yang, Hao Lin, Yupeng Sang, Landi Feng, Jianquan Liu, Minghui Kang. Cryptic divergences and repeated hybridizations within the endangered “living fossil” dove tree (Davidia involucrata) revealed by whole genome resequencing [J]. Plant Diversity, 2024, 46(02): 169-180. |
| [10] | Dan-Qi Li, Lu Jiang, Hua Liang, Da-Hai Zhu, Deng-Mei Fan, Yi-Xuan Kou, Yi Yang, Zhi-Yong Zhang. Resolving a nearly 90-year-old enigma: The rare Fagus chienii is conspecific with F. hayatae based on molecular and morphological evidence [J]. Plant Diversity, 2023, 45(05): 544-551. |
| [11] | Ting-Ting Zou, Sen-Tao Lyu, Qi-Lin Jiang, Shu-He Shang, Xiao-Fan Wang. Pre- and post-pollination barriers between two exotic and five native Sagittaria species: Implications for species conservation [J]. Plant Diversity, 2023, 45(04): 456-468. |
| [12] | Na Su, Richard G.J. Hodel, Xi Wang, Jun-Ru Wang, Si-Yu Xie, Chao-Xia Gui, Ling Zhang, Zhao-Yang Chang, Liang Zhao, Daniel Potter, Jun Wen. Molecular phylogeny and inflorescence evolution of Prunus (Rosaceae) based on RAD-seq and genome skimming analyses [J]. Plant Diversity, 2023, 45(04): 397-408. |
| [13] | Yi Jin, Hong Qian. U.PhyloMaker:An R package that can generate large phylogenetic trees for plants and animals [J]. Plant Diversity, 2023, 45(03): 347-352. |
| [14] | Da-Lv Zhong, Yuan-Cong Li, Jian-Qiang Zhang. Allopolyploid origin and niche expansion of Rhodiola integrifolia (Crassulaceae) [J]. Plant Diversity, 2023, 45(01): 36-44. |
| [15] | Romina Vidal-Russell, Mariana Tadey, Romana Urfusová, Tomáš Urfus, Cintia Paola Souto. Evolutionary importance of the relationship between cytogeography and climate: New insights on creosote bushes from North and South America [J]. Plant Diversity, 2022, 44(05): 492-498. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
