Amiryousefi, A., Hyvonen, J., Poczai, P., 2018. IRscope:an online program to visualize the junction sites of chloroplast genomes. Bioinformatics 34, 3030-3031. Ankenbrand, M.J., Pfaff, S., Terhoeven, N., et al., 2018. chloroExtractor:extraction and assembly of the chloroplast genome from whole genome shotgun data. J. Open Source Softw. 3, 464. Bakker, F.T., Lei, D., Yu, J., et al., 2016. Herbarium genomics:plastome sequence assembly from a range of herbarium specimens using an Iterative Organelle Genome Assembly pipeline. Biol. J. Linn. Soc. 117, 33-43. Bankevich, A., Nurk, S., Antipov, D., et al., 2012. SPAdes:a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455-477. Bi, G., Luan, X., Yan, J., 2024. ORPA:a fast and efficient phylogenetic analysis method for constructing genome-wide alignments of organelle genomes. J. Genet. Genomics 51, 352-358. Bi, G., Mao, Y., Xing, Q., et al., 2018. HomBlocks:a multiple-alignment construction pipeline for organelle phylogenomics based on locally collinear block searching. Genomics 110, 18-22. Camacho, C., Coulouris, G., Avagyan, V., et al., 2009. BLAST+:architecture and applications. BMC Bioinformatics 10, 1-9. Chen, W., Achakkagari, S.R., Stromvik, M., 2022. Plastaumatic:automating plastome assembly and annotation. Front. Plant Sci. 13, 1011948. Coissac, E., Hollingsworth, P.M., Lavergne, S., et al., 2016. From barcodes to genomes:extending the concept of DNA barcoding. Mol. Ecol. 25, 1423-1428. Daniell, H., Lin, C.-S., Yu, M., et al., 2016. Chloroplast genomes:diversity, evolution, and applications in genetic engineering. Genome Biol. 17, 134. Darling, A.E., Mau, B., Perna, N.T., 2010. progressiveMauve:multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5, e11147. Dierckxsens, N., Mardulyn, P., Smits, G., 2017. NOVOPlasty:de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 45, e18. Diez Menendez, C., Poczai, P., Williams, B., et al., 2023. IRplus:an augmented tool to detect inverted repeats in plastid genomes. Genome Biol. Evol. 15, evad177. Frazer, K.A., Pachter, L., Poliakov, A., et al., 2004. VISTA:computational tools for comparative genomics. Nucleic Acids Res. 32, W273-W279. Goodhead, I., Darby, A.C., 2015. Taking the pseudo out of pseudogenes. Curr. Opin. Microbiol. 23, 102-109. Greiner, S., Lehwark, P., Bock, R., 2019. OrganellarGenomeDRAW (OGDRAW) version 1.3.1:expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 47, W59-W64. Hsu, C.Y., Wu, C.S., Chaw, S.M., 2016. Birth of four chimeric plastid gene clusters in Japanese umbrella pine. Genome Biol. Evol. 8, 1776-1784. Huang, D.I., Cronk, Q.C., 2015. Plann:a command-line application for annotating plastome sequences. Appl. Plant Sci. 3, 1500026. Jansen, R.K., Ruhlman, T.A., 2012. Plastid genomes of seed plants. In:Bock, R., Knoop, V. (eds), Genomics of Chloroplasts and Mitochondria. Springer, Dordrecht (The Netherlands), pp. 103-126. Jin, J.-J., Yu, W.-B., Yang, J.-B., et al., 2020. GetOrganelle:a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 1-31. Jin, S., Daniell, H., 2015. The engineered chloroplast genome just got smarter. Trends Plant Sci. 20, 622-640. Jung, J., Kim, J.I., Jeong, Y.-S., et al., 2018. AGORA:organellar genome annotation from the amino acid and nucleotide references. Bioinformatics 34, 2661-2663. Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7:improvements in performance and usability. Mol. Biol. Evol. 30, 772-780. Knox, E.B., 2014. The dynamic history of plastid genomes in the Campanulaceae sensu lato is unique among angiosperms. Proc. Natl. Acad. Sci. U.S.A. 111, 11097-11102. Krzywinski, M., Schein, J., Birol, I., et al., 2009. Circos:an information aesthetic for comparative genomics. Genome Res. 19, 1639-1645. Li, H., Guo, Q., Xu, L., et al., 2023. CPJSdraw:analysis and visualization of junction sites of chloroplast genomes. PeerJ 11, e15326. Li, H.T., Yi, T.S., Gao, L.M., et al., 2019. Origin of angiosperms and the puzzle of the Jurassic gap. Nat. Plants 5, 461-470. Liu, C., Shi, L., Zhu, Y., et al., 2012. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences. BMC Genomics 13, 1-7. Liu, S., Ni, Y., Li, J., et al., 2023. CPGView:a package for visualizing detailed chloroplast genome structures. Mol. Ecol. Resour. 23, 694-704. Magee, A.M., Aspinall, S., Rice, D.W., et al., 2010. Localized hypermutation and associated gene losses in legume chloroplast genomes. Genome Res. 20, 1700-1710. McKain, M.R., Hartsock, R.H., Wohl, M.M., et al., 2017. Verdant:automated annotation, alignment and phylogenetic analysis of whole chloroplast genomes. Bioinformatics 33, 130-132. Mower, J.P., Vickrey, T.L., 2018. Structural diversity among plastid genomes of land plants. Adv. Bot. Res. 85, 263-292. Palmer, J.D., 1991. Plastid chromosomes:structure and evolution, in:Hermann, RG (ed), The molecular biology of plastids:cell culture and somatic cell genetics of plants. Springer, Vienna (Austria), pp. 5-53. Parra, G., Bradnam, K., Korf, I., 2007. CEGMA:a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061-1067. Qu, X.-J., Moore, M.J., Li, D.-Z., et al., 2019. PGA:a software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods 15, 50. Qu, X.-J., Zhang, X.-J., Cao, D.-L., et al., 2022. Plastid and mitochondrial phylogenomics reveal correlated substitution rate variation in Koenigia (Polygonoideae, Polygonaceae) and a reduced plastome for Koenigia delicatula including loss of all ndh genes. Mol. Phylogenet. Evol. 174, 107544. Qu, X.-J., Zou, D., Zhang, R.-Y., et al., 2023. Progress, challenge and prospect of plant plastome annotation. Front. Plant Sci. 14, 1166140. Raubeson, L.A., Jansen, R.K., 2005. Chloroplast genomes of plants, in:Henry, RJ (ed), Plant diversity and evolution:genotypic and phenotypic variation in higher plants. CABI, Cambridge (UK), pp. 45-68. Shaw, J., Lickey, E.B., Schilling, E.E., et al., 2007. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms:the tortoise and the hare III. Am. J. Bot. 94, 275-288. Shi, L., Chen, H., Jiang, M., et al., 2019. CPGAVAS2, an integrated plastome sequence annotator and analyzer. Nucleic Acids Res. 47, W65-W73. Soorni, A., Haak, D., Zaitlin, D., et al., 2017. Organelle_PBA, a pipeline for assembling chloroplast and mitochondrial genomes from PacBio DNA sequencing data. BMC Genomics 18, 1-8. Stamatakis, A., 2014. RAxML version 8:a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312-1313. Stothard, P., Grant, J.R., Van Domselaar, G., 2019. Visualizing and comparing circular genomes using the CGView family of tools. Brief. Bioinform. 20, 1576-1582. Straub, S.C.K., Parks, M., Weitemier, K., et al., 2012. Navigating the tip of the genomic iceberg:next-generation sequencing for plant systematics. Am. J. Bot. 99, 349-364. Stull, G.W., Qu, X.J., Parins-Fukuchi, C., et al., 2021. Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms. Nat. Plants 7, 1015-1025. Tillich, M., Lehwark, P., Pellizzer, T., et al., 2017. GeSeq-versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 45, W6-W11. Turudic, A., Liber, Z., Grdisa, M., et al., 2022. Chloroplast genome annotation tools:prolegomena to the identification of inverted repeats. Int. J. Mol. Sci. 23, 10804. Waterhouse, R.M., Seppey, M., Simao, F.A., et al., 2018. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543-548. Wicke, S., Schneeweiss, G.M., dePamphilis, C.W., et al., 2011. The evolution of the plastid chromosome in land plants:gene content, gene order, gene function. Plant Mol. Biol. 76, 273-297. Wolfe, K.H., Li, W.-H., Sharp, P.M., 1987. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc. Natl. Acad. Sci. U.S.A. 84, 9054-9058. Wu, P., Xu, C., Chen, H., et al., 2021. NOVOWrap:an automated solution for plastid genome assembly and structure standardization. Mol. Ecol. Resour. 21, 2177-2186. Wu, P., Xue, N., Yang, J., et al., 2024. OGU:A toolbox for better utilising organelle genomic data. Mol. Ecol. Resour. 25, e14044. Wyman, S.K., Jansen, R.K., Boore, J.L., 2004. Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20, 3252-3255. Xian, W., Bezrukov, I., Bao, Z., et al., 2025. TIPPo:A user-friendly tool for de novo assembly of organellar genomes with high-fidelity data. Mol. Biol. Evol. 42, msae247. https://doi.org/10.1093/molbev/msae247. Xiao, J., Sekhwal, M.K., Li, P., et al., 2016. Pseudogenes and their genome-wide prediction in plants. Int. J. Mol. Sci. 17, 1991. Ye, J., Coulouris, G., Zaretskaya, I., et al., 2012. Primer-BLAST:a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13, 1-11. Zheng, S., Poczai, P., Hyvonen, J., et al., 2020. Chloroplot:an online program for the versatile plotting of organelle genomes. Front. Genet. 11, 576124. Zhou, C., Brown, M., Blaxter, M., 2024. Oatk:a de novo assembly tool for complex plant organelle genomes. bioRxiv. https://doi.org/10.1101/2024.10.23.619857. Zhou, W., Armijos, C.E., Lee, C., et al., 2023. Plastid genome assembly using long-read data. Mol. Ecol. Resour. 23, 1442-1457. |