Chen, F.H., Chen J., Huang W., et al., 2019a. Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales. Earth-Sci. Rev. 192, 337-354. Chen, F.H., Dong G.H., Zhang D.J., et al., 2015b. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 B.P. Science 347, 248-250. Chen, J.G., Yang, Y., Sun, H., 2011. Advances in the studies of responses of alpine plants to global warming. Chin. J. Appl. Environ. Biol.17, 435-446. Deng, T., Abbott, R.J., Li, W.Q., et al, 2019. Genetic diversity hotspots and refugia identified by mapping multi-plants species haplotype diversity in China. Isr. J. Plant Sci. 66, 136-151. https://doi.org/10.1163/22238980-20191083. Huang, M.T., Piao, S.L., Ciais, P., et al., 2019. Air temperature optima of vegetation productivity across global biome. Nat. Ecol. Evol. 3, 772-779. Lewis, S., Maslin, M. 2015. Defining the Anthropocene. Nature 519, 171-180. Liu, Z., Yang, Y., Ji, S., et al., 2021. Effects of elevation and distance from highway on the abundance and community structure of bacteria in soil along Qinghai-Tibet highway. Int. J. Env. Res. Pub. He. 18, 13137. https://doi.org/10.3390/ijerph18241313. Lu, X.M., Zheng, X.Y., Liang, E.Y., et al. 2025. Patterns, dynamics and drivers of alpine treeline and shrublines. Nat. Rev. Earth. Env. 6, 489-502. Meyer, M.C., Aldenderfer, M.S., Wang, Z., et al., 2017. Permanent human occupation of the central Tibetan Plateau in the early Holocene. Science 355, 64-67. Miehe, G., Mao, K.S., Hasson, S., et al., 2025. What do we know about treelines of the Anthropocene in High Asia? Plant Divers. 47, XXX-XXX. https://doi.org/10.1016/j.pld.2023.08.005. Myers, N., Mittermeier, R.A., Mittermeier, C.G., et al., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853-858. Ni, J. 2000. A simulation of biomes on the Tibetan Plateau and their responses to global climate change. Mount Res. Dev. 20, 80-89. Pan, Y.L., Tang, H.P., Liu, D., et al. 2025. Geographical patterns and drivers of plant productivity and species diversity in the Qinghai-Tibet Plateau. Plant Divers. 47, XXX-XXX. https://doi.org/10.1016/j.pld.2023.06.007. Qian, H., Deng T., 2025. Species invasion and phylogenetic relatedness of vascular plants on the Qinghai-Tibet Plateau, the roof of the world. Plant Divers. 47, XXX-XXX. https://doi.org/10.1016/j.pld.2023.01.001. Su, J., Hong, D., Wen, J., et al., 2017. Resource investigation of rare and endangered medicinal plants Rhodiola crenulata on Tibetan Plateau. J. Chin. Med. Mater. 40, 1046-1050. Sun J., Liang, E., Barrio, I. C., et al., 2021. Fences undermine biodiversity targets. Science 374, 269. Sun, H., 2023. Flora of the Periglacial Zone of the Qinghai-Tibet Plateau, China. Forestry Publish House, Beijing. Tan, Z.X., Chen, X.P., Wang, Y., et al., 2024. The impact of the Qinghai-Tibet highway on plant community and diversity. Front. Plant Sci. 15, 1392924. 10.3389//fpls.2024.1392924. Wang, D.C., Wang S.R., Wang Z.H., et al., 2024. Quanlitative evaluation and spatio-temporal pattern evolution of human engineering activities on the Qinghai-Tibet Plateau. Acta Ecol. Sin. 44, 4142-4156. The Comprehensive Scientific Expedition to Qinghai-Xizang Plateau, Academia, Sinica. 1988. Vegetation Xizangica. Science Press, Beijing, China. Wang, E., Ding, W., 2024. Grazing led to an increase in the root: shoot ratio and a shallow root system in an alpine meadow of the Tibetan plateau. Front Environ Sci. 12, 1348220. Wen, J., Zhang, J., Nie, Z.L., et al., 2014. Evolutionary diversifications of plants on the Qinghai-Tibetan Plateau. Front. Genet. 5, 4. Xu, B., Li Z.M., Sun H., 2014. Seed Plants of the Alpine Subnival Belt from the Hengduan Mountains, SW China. Science Press, Beijing, pp.12-13. Yang, B., Qin, C., Wang, J., et al., 2014. A 3500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau. Proc. Natl. Acad. Sci. U.S.A. 111, 2903-2908. Yang, Y, Chen J.G, Song B, et al., 2025. Response of the Qinghai-Tibet Plateau’s plant diversity to climate change and human activity. Plant Divers. 47, XXX-XXX. Yao, X., Wu, J., Gong, X., et al., 2019. Effects of long term fencing on biomass, coverage, density, biodiversity and nutritional value of vegetation community in an alpine meadow of the Qinghai-Tibet Plateau. Ecol. Eng. 13, 80-93. Yao, T.D, Xue, Y., Chen, D.L, Chen, F.F., et al., 2019. Recent third pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysis. Bull. Am. Meteor. Soc. 100, 423-444. https://doi.org/10.1175/BAMS-D-17-0057.1. Zalasiewicz, J., Williams, M., Haywood, et al., 2011, The Anthropocene: a new epoch of geological time? Phil. Trans. R. Soc. Lond. A 369, 835-841. Zhang, D.C., Ye, J.X., Sun, H. 2016. Quantitative approaches to identify floristic units and centres of species endemism in Qinghai-Tibetan Plateau, south-western China. J. Biogeogr. 43, 2465-2476. Zhang, D.D., Li, S.H., 2002. Optical dating of Tibetan human hand- and footprints: An implication for the palaeoenvironment of the last glaciation of the Tibetan Plateau. Geophys. Res. Lett. 29, 1069. Zhang, L., Lu X.M, H Z et al., 2025. A rapid transition from spruce-fir to pine-broadleaf forests in response to disturbances and climate warming on the southeastern Qinghai-Tibet Plateau. Plant Divers. 47, XXX-XXX. https://doi.org/10.1016/j.pld.2023.03.002. Zhang, Y., Luo L., Li X. et al., 2025. Human agricultural activities influence the flowering time of turnip in the Qinghai-Tibet Plateau. Plant Divers. 47, XXX-XXX. https://doi.org/10.1016/j.pld.2023.04.002. Zhong, L., Su, Z., Ma, Y., et al., 2011. Accelerated changes of environmental conditions on the Tibetan Plateau caused by climate change. J. Clim. 24, 6540-6550. https://doi.org/10.1175/JCLI-D-10-05000.1. Zhou, R.Y., Yang P.F., Chen X.F., et al., 2025. Simulated climate warming strongly constrains the seedling establishment of alpine cushion Arenaria oreophila. Plant Divers. 47, XXX-XXX. https://doi.org/10.1016/j.pld.2023.11.003. |