Plant Diversity ›› 2025, Vol. 47 ›› Issue (04): 653-665.DOI: 10.1016/j.pld.2025.04.008
• Articles • Previous Articles Next Articles
Maryam Kazempour Larsarya, Hassan Pourbabaeia, Ali Salehia, Rasoul Yousefpourb,c, Arshad Alid
Received:
2024-09-01
Revised:
2025-04-24
Online:
2025-08-13
Published:
2025-08-13
Contact:
Arshad Ali,E-mail:arshadforester@gmail.com
Supported by:
Maryam Kazempour Larsarya, Hassan Pourbabaeia, Ali Salehia, Rasoul Yousefpourb,c, Arshad Alid
通讯作者:
Arshad Ali,E-mail:arshadforester@gmail.com
基金资助:
Maryam Kazempour Larsary, Hassan Pourbabaei, Ali Salehi, Rasoul Yousefpour, Arshad Ali. Tree-based attributes of large trees more effectively regulate aboveground carbon stock than trait-based ones in temperate deciduous forests[J]. Plant Diversity, 2025, 47(04): 653-665.
Maryam Kazempour Larsary, Hassan Pourbabaei, Ali Salehi, Rasoul Yousefpour, Arshad Ali. Tree-based attributes of large trees more effectively regulate aboveground carbon stock than trait-based ones in temperate deciduous forests[J]. Plant Diversity, 2025, 47(04): 653-665.
Ali, A., 2023. Biodiversity-ecosystem functioning research:Brief history, major trends and perspectives. Biol. Conserv. 285, 110210. https://doi.org/10.1016/j.biocon.2023.110210. Ali, A., Lin, S.L., He, J.K., et al., 2019. Big-sized trees overrule remaining trees' attributes and species richness as determinants of aboveground biomass in tropical forests. Glob. Chang. Biol. 25, 2810-2824. https://doi.org/10.1111/gcb.14707. Ali, A., Wang, L.Q., 2021. Big-sized trees and forest functioning:Current knowledge and future perspectives. Ecol. Indic. 127, 107760. https://doi.org/10.1016/j.ecolind.2021.107760. Aponte, C., Kasel, S., Nitschke, C.R., et al., 2020. Structural diversity underpins carbon storage in Australian temperate forests. Glob. Ecol. Biogeogr. 29, 789-802. https://doi.org/10.1111/geb.13038. Baker, T.R., Phillips, O.L., Laurance, W.F., et al., 2009. Do species traits determine patterns of wood production in Amazonian forests? Biogeosciences 6, 297-307. https://doi.org/10.5194/bg-6-297-2009. Barbier, S., Gosselin, F., Balandier, P., 2008. Influence of tree species on understory vegetation diversity and mechanisms involved-A critical review for temperate and boreal forests. For. Ecol. Manage. 254, 1-15. https://doi.org/10.1016/j.foreco.2007.09.038. Bartels, S.F., Chen, H.Y.H., 2013. Interactions between overstorey and understorey vegetation along an overstorey compositional gradient. J. Veg. Sci. 24, 543-552. https://doi.org/10.1111/j.1654-1103.2012.01479.x. Bartels, S.F., Chen, H.Y.H., 2010. Is understory plant species diversity driven by resource quantity or resource heterogeneity? Ecology 91, 1931-1938. https://doi.org/10.1890/09-1376.1. Barton k, 2016. R-package 'MuMIn', Model selection and model averaging based on information criteria (AICc and alike). R Package version 1. https://CRAN.R-project.org/package=MuMIn. Bastin, J.F., Barbier, N., Rejou-Mechain, M., et al., 2015. Seeing Central African forests through their largest trees. Sci. Rep. 5, 13156. https://doi.org/10.1038/srep13156. Bastin, J.F., Rutishauser, E., Kellner, J.R., et al., 2018. Pan-tropical prediction of forest structure from the largest trees. Glob. Ecol. Biogeogr. 27, 1366-1383. https://doi.org/10.1111/geb.12803. Bennett, A.C., Mcdowell, N.G., Allen, C.D., et al., 2015. Larger trees suffer most during drought in forests worldwide. Nat. Plants 1, 15139. https://doi.org/10.1038/nplants.2015.139. Bordin, K.M., Esquivel-Muelbert, A., Bergamin, R.S., et al., 2021. Climate and large-sized trees, but not diversity, drive above-ground biomass in subtropical forests. For. Ecol. Manage. 490, 119126. https://doi.org/10.1016/j.foreco.2021.119126. Bremner, J.M., 1996. Nitrogen Total-Methods of Soil Analysis. Part 3. Chemical Methods. Soil Sci. Soc. Am. Press. https://doi.org/10.2136/sssabookser5.3.c37. Chave, J., Coomes, D., Jansen, S., et al, A.E., 2009. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351-366. https://doi.org/10.1111/j.1461-0248.2009.01285.x. Clark, David B., Clark, D.A., 1996. Abundance, growth and mortality of very large trees in neotropical lowland rain forest. For. Ecol. Manage. 80, 235-244. https://doi.org/10.1016/0378-1127(95)03607-5. Conti, G., Diaz, S., 2013. Plant functional diversity and carbon storage-an empirical test in semi-arid forest ecosystems. J. Ecol. 101, 18-28. https://doi.org/10.1111/1365-2745.12012. Coomes, D.A., Kunstler, G., Canham, C.D., et al., 2009. A greater range of shade-tolerance niches in nutrient-rich forests:An explanation for positive richness-productivity relationships? J. Ecol. 97, 705-717. https://doi.org/10.1111/j.1365-2745.2009.01507.x. Cornelissen, J.H.C., Lavorel, S., Garnier, E., Diaz, S., et al., 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335-380. https://doi.org/10.1071/BT02124. De Deyn, G.B., Cornelissen, J.H.C., Bardgett, R.D., 2008. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol. Lett. 11, 516-531. https://doi.org/10.1111/j.1461-0248.2008.01164.x. de Lima, R.B., Gorgens, E.B., da Silva, D.A.S., et al., 2023. Giants of the Amazon:How does environmental variation drive the diversity patterns of large trees? Glob. Chang. Biol. 29, 4861-4879. https://doi.org/10.1111/gcb.16821. Diaz, S., Kattge, J., Cornelissen, J.H.C., et al., 2016. The global spectrum of plant form and function. Nature 529, 167-171. https://doi.org/10.1038/nature16489. Diaz, S., Lavorel, S., De Bello, F., et al., 2007. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl. Acad. Sci. U.S.A. 104, 20684-20689. https://doi.org/10.1073/pnas.0704716104. Enquist B. J., West J. B., Charnov E. L., B.J.H., 1999. Allometric scaling of production and life-history variation in vascular plants. Nature 401, 907-911. https://doi.org/10.1038/44819. Finegan, B., Pena-Claros, M., de Oliveira, A., et al., 2015. Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. J. Ecol. 103, 191-201. https://doi.org/10.1111/1365-2745.12346. Fotis, A.T., Murphy, S.J., Ricart, R.D., et al., 2018. Above-ground biomass is driven by mass-ratio effects and stand structural attributes in a temperate deciduous forest. J. Ecol. 106, 561-570. https://doi.org/10.1111/1365-2745.12847. Gough, C.M., Atkins, J.W., Fahey, R.T., et al., 2019. High rates of primary production in structurally complex forests. Ecology 100, e02864. https://doi.org/10.1002/ecy.2864. Graham, M.H., 2003. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809-2815. https://doi.org/10.1890/02-3114. Gromping, U., 2006. Relative Importance for Linear Regression in R:The Package relaimpo. J. Stat. Softw. 17, 1-27. https://doi.org/10.18637/jss.v017.i01. Jucker, T., Bongalov, B., Burslem, D.F.R.P., et al., 2018. Topography shapes the structure, composition and function of tropical forest landscapes. Ecol. Lett. 21, 989-1000. https://doi.org/10.1111/ele.12964. Jucker, T., Fischer, F.J., Chave, J., et al., 2022. Tallo:A global tree allometry and crown architecture database. Glob. Chang. Biol. 28, 5254-5268. https://doi.org/10.1111/gcb.16302. Kazempour Larsary, M., Pourbabaei, H., Sanaei, A., et al., 2021. Tree-size dimension inequality shapes aboveground carbon stock across temperate forest strata along environmental gradients. For. Ecol. Manage. 496, 119482. https://doi.org/10.1016/j.foreco.2021.119482. Lai, J., Zou, Y., Zhang, J., et al., 2022. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package. Methods Ecol. Evol. 13, 782-788. https://doi.org/10.1111/2041-210X.13800. Laliberte, E., Legendre, P., 2010. A distance-based framework for measuring functional diversity from multiple traits, Ecology 91, 299-305. https://doi.org/10.1890/08-2244.1. Le, S., Josse, J., Rennes, A., et al., 2008. FactoMineR:An R Package for Multivariate Analysis, J. Stat. Softw. 25, 1-18. https://doi.org/10.18637/jss.v025.i01. Lee, H., Seo, Y., Kim, H., et al., 2022. Forest Ecology and Management Species evenness declines but specific functional strategy enhances aboveground biomass across strata in subtropical-Warm-temperate forests of South Korea. For. Ecol. Manage. 512, 120179. https://doi.org/10.1016/j.foreco.2022.120179. Lindenmayer, D.B., Laurance, W.F., 2017. The ecology, distribution, conservation and management of large old trees. Biol. Rev. 92, 1434-1458. https://doi.org/10.1111/brv.12290. Lohbeck, M., Poorter, L., Martinez-Ramos, M., et al., 2015. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology 96, 1242-1252. https://doi.org/10.1890/14-0472.1. Loreau, M., Naeem, S., Inchausti, P., et al., 2001. Biodiversity and ecosystem functioning:Current knowledge and future challenges. Science 294, 804-808. https://doi.org/10.1126/science.1064088. Lutz, J.A., Furniss, T.J., Johnson, D.J., et al., 2018. Global importance of large-diameter trees. Glob. Ecol. Biogeogr. 27, 849-864. https://doi.org/10.1111/geb.12747. Mason, N.W.H., Mouillot, D., Lee, W.G., et al., 2005. Functional richness, functional evenness and functional divergence:The primary components of functional diversity. Oikos 111, 112-118. https://doi.org/10.1111/j.0030-1299.2005.13886.x. Meakem, V., Tepley, A.J., Gonzalez-Akre, E.B., et al., 2018. Role of tree size in moist tropical forest carbon cycling and water deficit responses. New Phytol. 219, 947-958. https://doi.org/10.1111/nph.14633. Oksanen, J., Legendre, P., O'Hara, B., et al., 2020. Vegan:Community Ecology Package. R package version 2.5-7. Community Ecol. Packag. 10. Olsen, S.R., Cole, C. V, Watandbe, F., et al., 1954. Estimation of Available Phosphorus in Soil by Extraction with sodium Bicarbonate. J. Chem. Inf. Model. 53, 1689-1699. Phillips, O.L., van der Heijden, G., Lewis, S.L., et al., 2010. Drought-mortality relationships for tropical forests. New Phytol. 187, 631-646. https://doi.org/10.1111/j.1469-8137.2010.03359.x. Poorter, L., van der Sande, M.T., Arets, E.J.M.M., et al., 2017. Biodiversity and climate determine the functioning of Neotropical forests. Glob. Ecol. Biogeogr. 26, 1423-1434. https://doi.org/10.1111/geb.12668. Poorter, L., van der Sande, M.T., Thompson, J., et al., 2015. Diversity enhances carbon storage in tropical forests. Glob. Ecol. Biogeogr. 24, 1314-1328. https://doi.org/10.1111/geb.12364. Quesada, C.A., Phillips, O.L., Schwarz, M., et al., 2012. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9, 2203-2246. https://doi.org/10.5194/bg-9-2203-2012. R Development CoreTeam, 2024. R:a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Reich, P.B., 2014. The world-wide "fast-slow" plant economics spectrum:A traits manifesto. J. Ecol. 102, 275-301. https://doi.org/10.1111/1365-2745.12211. Rosseel, Y., 2012. Lavaan:An R package for structural equation modeling. J. Stat. Softw. 48, 1-36. https://doi.org/10.18637/jss.v048.i02. Sheil, D., Eastaugh, C.S., Vlam, M., et al., 2017. Does biomass growth increase in the largest trees? Flaws, fallacies and alternative analyses. Funct. Ecol. 31, 568-581. https://doi.org/10.1111/1365-2435.12775. Slik, J.W.F., Paoli, G., Mcguire, K., et al., 2013. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob. Ecol. Biogeogr. 22, 1261-1271. https://doi.org/10.1111/geb.12092. Stephenson, N.L., Das, A.J., Condit, R., et al., 2014. Rate of tree carbon accumulation increases continuously with tree size. Nature 507, 90-93. https://doi.org/10.1038/nature12914. van der Plas, F., 2019. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220-1245. https://doi.org/10.1111/brv.12499. Villeger, S., Mason, N.W.H., Mouillot, D., 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290-2301. https://doi.org/10.1890/07-1206.1. Wright, I.J., Reich, P.B., Westoby, M., et al., 2004. The worldwide leaf economics spectrum. Nature 428, 821-827. https://doi.org/10.1038/nature02403. Yachi, S., Loreau, M., 2007. Does complementary resource use enhance ecosystem functioning? A model of light competition in plant communities. Ecol. Lett. 10, 54-62. https://doi.org/10.1111/j.1461-0248.2006.00994.x. Yuan, Z., Ali, A., Sanaei, A., et al., 2021. Few large trees, rather than plant diversity and acomposition, drive the above-ground biomass stock and dynamics of temperate forests in northeast China. For. Ecol. Manage. 481. https://doi.org/10.1016/j.foreco.2020.118698. Yuan, Z., Gazol, A., Wang, X., et al., 2012. What happens below the canopy? Direct and indirect influences of the dominant species on forest vertical layers. Oikos 121, 1145-1153. https://doi.org/10.1111/j.1600-0706.2011.19757.x. Zhang, Y., Chen, H.Y.H., 2015. Individual size inequality links forest diversity and above-ground biomass. J. Ecol. 103, 1245-1252. https://doi.org/10.1111/1365-2745.12425. Zhang, Y., Chen, H.Y.H., Taylor, A.R., 2017. Positive species diversity and above-ground biomass relationships are ubiquitous across forest strata despite interference from overstorey trees. Funct. Ecol. 31, 419-426. https://doi.org/10.1111/1365-2435.12699. Zuur, A.F., 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York. https://doi.org/10.1086/648138. |
[1] | Tingting Deng, Qingqing Du, Yan Zhu, Simon A. Queenborough. Environmental drivers of herbaceous plant diversity in the understory community of a warm-temperate forest [J]. Plant Diversity, 2025, 47(02): 282-290. |
[2] | Cindy Q. Tang, Min-Rui Du, Huan-Chong Wang, You-Cai Shi, Jia-Le Zeng, Shu-Li Xiao, Peng-Bin Han, Jian-Ran Wen, Shi-Qian Yao, Ming-Chun Peng, Chong-Yun Wang, Yong-Ping Li, Jordi López-Pujol. An unprotected vulnerable relict subtropical conifer—Keteleeria evelyniana: Its forests, populations, growth and endangerment by invasive alien plant species in China [J]. Plant Diversity, 2024, 46(05): 648-660. |
[3] | Wen-Hao Zeng, Shi-Dan Zhu, Ying-Hua Luo, Wei Shi, Yong-Qiang Wang, Kun-Fang Cao. Aboveground biomass stocks of species-rich natural forests in southern China are influenced by stand structural attributes, species richness and precipitation [J]. Plant Diversity, 2024, 46(04): 530-536. |
[4] | Hong Qian, Zun Dai, Jian Wang. Strong evidence for latitudinal diversity gradient in mosses across the world [J]. Plant Diversity, 2024, 46(04): 537-541. |
[5] | Nian Zhou, Ke Miao, Changkun Liu, Linbo Jia, Jinjin Hu, Yongjiang Huang, Yunheng Ji. Historical biogeography and evolutionary diversification of Lilium (Liliaceae): New insights from plastome phylogenomics [J]. Plant Diversity, 2024, 46(02): 219-228. |
[6] | Shengchun Li, Tieyao Tu, Shaopeng Li, Xian Yang, Yong Zheng, Liang-Dong Guo, Dianxiang Zhang, Lin Jiang. Different mechanisms underlie similar species-area relationships in two tropical archipelagoes [J]. Plant Diversity, 2024, 46(02): 238-246. |
[7] | Shi-Guang Wei, Lin Li, Kun-Dong Bai, Zhi-Feng Wen, Jing-Gang Zhou, Qin Lin. Community structure and species diversity dynamics of a subtropical evergreen broad-leaved forest in China: 2005 to 2020 [J]. Plant Diversity, 2024, 46(01): 70-77. |
[8] | Wei Wang, Kun Xin, Yujun Chen, Yuechao Chen, Zhongmao Jiang, Nong Sheng, Baowen Liao, Yanmei Xiong. Spatio-temporal variation of water salinity in mangroves revealed by continuous monitoring and its relationship to floristic diversity [J]. Plant Diversity, 2024, 46(01): 134-143. |
[9] | Cindy Q. Tang, Shi-Qian Yao, Peng-Bin Han, Jian-Ran Wen, Shuaifeng Li, Ming-Chun Peng, Chong-Yun Wang, Tetsuya Matsui, Yong-Ping Li, Shan Lu, Yuan He. Forest characteristics, population structure and growth trends of threatened relict Pseudotsuga forrestii in China [J]. Plant Diversity, 2023, 45(04): 422-433. |
[10] | Hong Qian, Jian Zhang, Mei-Chen Jiang. Global patterns of fern species diversity: An evaluation of fern data in GBIF [J]. Plant Diversity, 2022, 44(02): 135-140. |
[11] | Li Xue, Linbo Jia, Gi-soo Nam, Yongjiang Huang, Shitao Zhang, Yuqing Wang, Zhuo Zhou, Yongsheng Chen. Involucre fossils of Carpinus, a northern temperate element, from the Miocene of China and the evolution of its species diversity in East Asia [J]. Plant Diversity, 2020, 42(03): 155-167. |
[12] | Uma Shankar. Phytosociology of stratification in a lowland tropical rainforest occurring north of the Tropic of Cancer in Meghalaya, India [J]. Plant Diversity, 2019, 41(05): 285-299. |
[13] | Hua Zhu, Yong Chai, Shisun Zhou, Lichun Yan, Jipu Shi, Guoping Yang. Combined community ecology and floristics, a synthetic study on the upper montane evergreen broad-leaved forests in Yunnan, southwestern China [J]. Plant Diversity, 2016, 38(06): 295-302. |
[14] | Zhe Ren a, b, Hua Peng a, *, Zhen-Wen Liu a, **. The rapid climate change-caused dichotomy on subtropical evergreen broad-leaved forest in Yunnan: Reduction in habitat diversity and increase in species diversity [J]. Plant Diversity, 2016, 38(03): 142-148. |
[15] | WU Yu-Jiao, MIAO Yan-Ming, BI Run-Cheng. Herbaceous Plant Species Diversity and Regeneration in Shrub Gaps in Huoshan Mountain of Shanxi Province [J]. Plant Diversity, 2015, 37(2): 203-208. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||