Alarcon, R., Campbell, D.R., 2000. Absence of conspecific pollen advantage in the dynamics of an Ipomopsis (Polemoniaceae) hybrid zone. Am. J. Bot. 87, 819-824. Arceo-Gomez, G., 2021. Spatial variation in the intensity of interactions via heterospecific pollen transfer may contribute to local and global patterns of plant diversity. Ann. Bot., 128, 383-394. Arceo-Gomez, G., Ashman, T.L., 2014. Coflowering community context influences female fitness and alters the adaptive value of flower longevity in Mimulus guttatus. Am. Nat. 183(2), E50-E63. Arceo-Gomez, G., Raguso, R.A., Geber, M.A., 2016. Can plants evolve tolerance mechanisms to heterospecific pollen effects? An experimental test of the adaptive potential in Clarkia species. Oikos 125, 718-725. Arceo-Gomez, G., Schroeder, A., Albor, C., et al., 2019. Global geographic patterns of heterospecific pollen receipt help uncover potential ecological and evolutionary impacts across plant communities worldwide. Sci. Rep. 9, 8086. Armbruster, W.S., Edwards, M.E., Debevec, E.M., 1994. Floral character Displacement generates assemblage structure of western Australian trigger plants (stylidium). Ecology 75, 315-329. Ashman, T.L., Arceo-Gomez, G., 2013. Toward a predictive understanding of the fitness costs of heterospecific pollen receipt and its importance in co-flowering communities. Am. J. Bot. 100, 1061-1070. Ashman, T.L., Wei, N., 2024. Evaluating the influences of floral traits and pollinator generalism on α and β diversity of heterospecific pollen on stigmas. Funct. Ecol. 38(2), 465-476. Bi, C., Opedal, OE.H., Yang, T., et al., 2024. Experimental grazer exclusion increases pollination reliability and influences pollinator-mediated plant-plant interactions in Tibetan alpine meadows. Alpine Bot. 134, 51-67. Blomberg, S.P., Garland Jr, T., Ives, A. R., 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57(4), 717-745. Briggs, H.M., Anderson, L.M., Atalla, L.M., et al., 2016. Heterospecific pollen deposition in Delphinium barbeyi: linking stigmatic pollen loads to reproductive output in the field. Ann. Bot. 117, 341-347. Bruckman, D., Campbell, D.R., 2016. Pollination of a native plant changes with distance and density of invasive plants in a simulated biological invasion. Am. J. Bot. 103, 1458-1465. Burgess, K.S., Morgan, M., Husband, B.C., 2008. Interspecific seed discounting and the fertility cost of hybridization in an endangered species. New Phytol. 177, 276-284. Campbell, D.R., Motten, A.F., 1985. The mechanism of competition for pollination between two forest herbs. Ecology 66, 554-563. Caruso, C.M., Alfaro, M., 2000. Interspecific pollen transfer as a mechanism of competition: effect of Castilleja linariaefolia pollen on seed set of Ipomopsis aggregata. Can. J. Bot. 78, 600-606. Chao, A., Gotelli, N.J., Hsieh, T.C., et al., 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45-67. Emer, C., Vaughan, I.P., Hiscock, S., et al., 2015. The impact of the invasive alien plant, Impatiens glandulifera, on pollen transfer networks. PLoS One 10, e0143532. Fang, Q., Gao, J., Armbruster, W.S., et al., 2019. Multi-year stigmatic pollen-load sampling reveals temporal stability in interspecific pollination of flowers in a subalpine meadow. Oikos 128, 1739-1747. Fang, Q., Huang, S.Q., 2013. A directed network analysis of heterospecific pollen transfer in a biodiverse community. Ecology 94, 1176-1185. Fang, Q., Zhang, T., Montgomery, B.R., 2023. Spatial variation of pollen receipt and effects of heterospecific pollen on seed set in Salvia przewalskii. Ecol. Evol. 13, e9795. Hao, K., Fang, Q., Huang, S.Q., 2023. Do Silene species with exposed stigmas tolerate interference by heterospecific pollen? Am. J. Bot. 110, e16147. Huang, S.Q., Shi, X.Q., 2013. Floral isolation in Pedicularis: how do congeners with shared pollinators minimize reproductive interference? New Phytol. 199, 858-865. Jakobsson, A., Lazaro, A., Totland, O., 2009. Relationships between the floral neighborhood and individual pollen limitation in two self-incompatible herbs. Oecologia 160, 707-719. Johnson, A.L., Ashman, T.L., 2019. Consequences of invasion for pollen transfer and pollination revealed in a tropical island ecosystem. New Phytol., 221, 142-154. Kallimanis, A., Petanidou, T., Tzanopoulos, J., et al., 2009. Do plant-pollinator interaction networks result from stochastic processes? Ecol. Model. 220, 684-693. Kay, K.M., Zepeda, A.M., Raguso, R.A., 2019. Experimental sympatry reveals geographic variation in floral isolation by hawkmoths. Ann. Bot. 123, 405-413. Lai, J.S., Zhu, W.J., Cui, D.F., et al., 2023. Extension of the glmm. hp package to zero-inflated generalized linear mixed models and multiple regression. J. Plant Ecol. 16(6), rtad038. Lai, J.S., Zou, Y., Zhang, S., et al., 2022. glmm.hp: an R package for computing individual effect of predictors in generalized linear mixed models. J. Plant Ecol. 15(6), 1302-1307. Lanuza, J.B., Bartomeus, I., Ashman, T.L., et al., 2021. Recipient and donor characteristics govern the hierarchical structure of heterospecific pollen competition networks. J. Ecol. 109, 2329-2341. Montgomery, B.R., Rathcke, B.J., 2012. Effects of floral restrictiveness and stigma size on heterospecific pollen receipt in a prairie community. Oecologia 168, 449-458. Morales, C.L., Traveset, A., 2008. Interspecific pollen transfer: magnitude, prevalence and consequences for plant fitness. Crit. Rev. Plant Sci. 27, 221-238. Moreira-Hernandez, J.I., Muchhala, N., 2019. Importance of pollinator-sediated interspecific pollen transfer for angiosperm evolution. Annu. Rev. Ecol. Evol. Syst. 50, 191-217. Muchhala, N., Thomson, J.D., 2012. Interspecific competition in pollination systems: costs to male fitness via pollen misplacement. Funct. Ecol. 26, 476-482. Myers, N., Mittermeier, R.A., Mittermeier, C.G., et al., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853-858. Ollerton, J., Winfree, R., Tarrant, S., 2011. How many flowering plants are pollinated by animals? Oikos 120, 321-326. Sargent, R.D., Ackerly, D.D., 2008. Plant-pollinator interactions and the assembly of plant communities. Trends Ecol. Evol. 23, 123-130. Smith, G.X., Swartz, M.T., Spigler, R.B., 2021. Causes and consequences of variation in heterospecific pollen receipt in Oenothera fruticosa. Am. J. Bot. 108, 1612-1624. Tong, Z.Y., Huang, S.Q., 2016. Pre-and post-pollination interaction between six co-flowering Pedicularis species via heterospecific pollen transfer. New Phytol. 211, 1452-1461. Tong, Z.Y., Wu, L.Y., Feng, H.H., et al., 2023. New calculations indicate that 90% of flowering plant species are animal-pollinated. Natl. Sci. Rev. 10, nwad219. Tur, C., Saez, A., Traveset, A., et al., 2016. Evaluating the effects of pollinator-mediated interactions using pollen transfer networks: evidence of widespread facilitation in south Andean plant communities. Ecol. Lett. 19: 576-586. Wei, N., Kaczorowski, R.L., Arceo-Gomez, G., et al., 2021. Pollinators contribute to the maintenance of flowering plant diversity. Nature 597, 688-692. Zhang, T., Tang, X.X., Fang, Q., 2021. Pollinator sharing among co-flowering plants mediates patterns of pollen transfer. Alpine Bot. 131, 125-133. |