Allen, J.R.M., Forrest, M., Hickler, T., et al., 2020. Global vegetation patterns of the past 140,000 years. J. Biogeogr. 47, 2073-2090. An, Y., Liu, S., Sun, Y., et al., 2021. Determining the importance of core areas in the alpine shrub-meadow gradient zone of the Qinghai-Tibet Plateau. Ecol. Model. 440, 109392. Bonardi, A., Ficetola, G.F., Razzetti, E., et al., 2022. ReptIslands:Mediterranean islands and the distribution of their reptile fauna. Global Ecol. Biogeogr. 00, 1-8. Dimitradou, S., Nikolakopoulos, K.G., 2022. Development of the Statistical Errors Raster Toolbox with Six Automated Models for Raster Analysis in GIS Environments. Remote Sens. 14, 5446. Dong, C., Wang, X., Ran, Y., et, al., 2022. Heatwaves Significantly Slow the Vegetation Growth Rate on the Tibetan Plateau. Remote Sens. 14, 2402. Ding, L., Kapp, P., Cai, F.L., et al., 2022. Timing and mechanisms of Tibetan Plateau uplift. Nat. Rev. Earth Env. 3, 652-667. Fischer, J.C., Walentowitz, A., Beierkuhnlein, C., 2022. The biome inventory-Standardizing global biogeographical land units. Global Ecol. Biogeogr. 31, 2172-2183. Hempson, G.P., Archibald, S., Bond, W.J., 2015. A continent-wide assessment of the form and intensity of large mammal herbivory in Africa. Science 350, 1056-1061. Karina, D.S., Thiago, B.V., Talissa, P.M., et al., 2021. Measuring stream habitat conditions:Can remote sensing substitute for field data? Sci. Total Environ. 788, 147617. Ledford, H., 2017. Artificial intelligence identifies plant species for science. Nature 425, 1788. Li, W., Wang, N., Ling, C., et, al., 2023. Regional peculiarities in the importance of precipitation and temperature on mid-to-late Holocene arboreal degradation on the eastern Tibetan Plateau. Global Planet. Change 229, 104252. Li, R., Xu, X., Xu, X., et, al., 2023. Importance of orographic gravity waves over the Tibetan Plateau on the spring rainfall in East Asia. Sci. China Earth Sci. 66, 2594-2602. Lin, Y.M., Wang, H.Z., Li, J.Z., et al., 2019. Data source selection for information integration in big data era. Inform. Sciences 479, 197-213. Liu, R.G., Liu, Y., 2013. Generation of new cloud masks from MODIS land surface reflectance products. Remote Sens. Environ. 133, 21-37. Oberle, A.R., 2004. GIS concepts and ArcGIS methods. J. Geogr. 103, 271-271. Olson, D.M., Dinerstein, E., Wikramanayake, E.D., et al., 2001. Terrestrial ecoregions of the worlds:A new map of life on Earth. Bioscience 51, 933-938. Rangel, T.F., Edwards, N.R., Holden, P.B., et al., 2018. Modeling the ecology and evolution of biodiversity:Biogeographical cradles, museums, and graves. Science 361, 6399. Ritter, N., Ruth, M., Environm Res Inst, M., 1996. The geotiff data interchange standard for raster geographic images., Int. J. Remote Sens. 18, 1637-1647.11th Thematic Conference on Applied Geologic Remote Sensing, Las Vegas, Nv, pp. 589-598. Santos, A.M.C., Jones, O.R.,Quicke, D.L.J., et al., 2010. Assessing the reliability of biodiversity databases:Identifying evenly inven-toried island parasitoid faunas (Hymenoptera:Ichneumonoidea) worldwide. Insect Conserv. Diver. 3, 72-82. Sun, Y.F., Chang, J.F., Fang, J.Y., 2023. Above-and belowground net-primary productivity:A field-based global database of grasslands. Ecology 104, 2. Tresch, L., Mu, Y., Itoh, A., et al., 2019. Easy MPE:Extraction of Quality Microplot Images for UAV-Based High-Throughput Field Phenotyping. Plant Phenomics 2019, 2591849. Wang, K.X., Ye, S.J., Gao, P.C., et al., 2022. Optimization of Numerical Methods for Transforming UTM Plane Coordinates to Lambert Plane Coordinates. Remote Sens. 14, 2056. Wu, Z., Sun, H., Zhou, Z., et al., 2010. Floristics of Seed Plants from China. Science Press, Beijing. Yang, W., Ma, K., Kreft, H., 2014. Environmental and socio-economic factors shaping the geography of floristic collections in China. Global Ecol. Biogeogr. 23, 1284-1292. Yildirim, M.B., Cakar, T., Doguc, U., et al., 2006. Machine number, priority rule, and due date determination in flexible manufacturing systems using artificial neural networks. Comput. Ind. Eng. 50, 185-194. Yu, H., Deane, D.C., Sui, X., et al., 2019. Testing multiple hypotheses for the high endemic plant diversity of the Tibetan Plateau. Global Ecol. Biogeogr. 28, 131e144. Yu, H., Miao, S., Xie, G., et al., 2020. Contrasting floristic diversity of the Hengduan mountains, the Himalayas and the Qinghai-Tibet Plateau sensu stricto in China. Front. Ecol. Evol. 8, 136. Yu, H., Yang, M., Lu, Z., et al., 2023. A phylogenetic approach identifies patterns of beta diversity and floristic subregions of the Qinghai-Tibet Plateau. Plant diversity. Zhang, T., Niinemets, U., Sheffield, J., et al., 2018. Shifts in tree functional composition amplify the response of forest biomass to climate. Nature. 556, 99-102. Zhou, G.S., Ren, H.R., Liu, T., et al., 2022. A new regional vegetation mapping method based on terrain-climate-remote sensing and its application on the Qinghai-Xizang Plateau. Sci. China Earth Sci. 66, 237-246. |