Plant Diversity ›› 2023, Vol. 45 ›› Issue (06): 621-629.DOI: 10.1016/j.pld.2023.05.002
• Review • Next Articles
Yue Zhang, Jing-Jing Cao, Qing-Pei Yang, Ming-Zuo Wu, Yong Zhao, De-Liang Kong
Received:
2022-11-17
Revised:
2023-04-15
Online:
2023-12-28
Published:
2023-11-25
Contact:
De-Liang Kong,E-mail:deliangkong1999@126.com
Supported by:
Yue Zhang, Jing-Jing Cao, Qing-Pei Yang, Ming-Zuo Wu, Yong Zhao, De-Liang Kong
通讯作者:
De-Liang Kong,E-mail:deliangkong1999@126.com
基金资助:
Yue Zhang, Jing-Jing Cao, Qing-Pei Yang, Ming-Zuo Wu, Yong Zhao, De-Liang Kong. The worldwide allometric relationship in anatomical structures for plant roots[J]. Plant Diversity, 2023, 45(06): 621-629.
Yue Zhang, Jing-Jing Cao, Qing-Pei Yang, Ming-Zuo Wu, Yong Zhao, De-Liang Kong. The worldwide allometric relationship in anatomical structures for plant roots[J]. Plant Diversity, 2023, 45(06): 621-629.
[1] Falster, D. S., Warton, D. I., Wright, I. J. et al., 2006. SMATR, standardised major axis tests and routines, ver 2.0. [WWW document], http://www.bio.mq.edu.au/ecology/SMATR (last access: 22 November 2006). [2] Feild, T.S., Brodribb, T.J., Iglesias, A., et al., 2011. Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution. Proc Natl Sci. U. S.A. 108, 8363-8366. [3] Freschet, G.T., Cornelissen, J.H.C., Van Logtestijn, R.S.P., et al., 2010. Evidence of the ‘plant economics spectrum’ in a subarctic flora. J Ecol. 98, 362-373. [4] Gerhart, L.M., Ward, J.K., 2010. Plant responses to low CO2 of the past. New Phytol. 188, 674-695. [5] Gu, J.C., Wang, Y., Fahey, T.J., et al., 2017. Effects of root diameter, branch order, soil depth and season of birth on fine root life span in five temperate tree species. Eur J Forest Res. 136, 727-738. [6] Gu, J.C., Xu, Y., Dong, X.Y., et al., 2014. Root diameter variations explained by anatomy and phylogeny of 50 tropical and temperate tree species. Tree Physiol. 34, 415-425. [7] Betekhtina, A.A., Tukova, D.E., Veselkin, D.V. Root structure syndromes of four families of monocots in the Middle Urals. Plant Divers. https://doi.org/10.1016/j.pld.2023.01.007. [8] Guo, D.L., Mitchell, R.J., Withington, J.M., et al., 2008a. Endogenous and exogenous controls of root life span, mortality and nitrogen flux in a longleaf pine forest: root branch order predominates. J Ecol. 96, 737-745. [9] Guo, D.L., Xia, M.X., Wei, X., et al., 2008b. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytol. 180, 673-683. [10] Han, M.G., Zhu, B., 2021. Linking root respiration to chemistry and morphology across species. Glob Change Biol. 27, 190-201. [11] Cao, J.J., Chen, J., Yang, Q.P., et al., 2023. Leaf hydraulics coordinated with leaf economics and leaf size in mangrove species along a salinity gradient. Plant Divers. 45, 309–314. [12] Cao, J.J., Yang, Q.P., Chen, J., et al. 2022. Novel leaf-root coordination driven by leaf water storage tissues in mangroves, BioRxiv 501578 [Preprint]. https://doi.org/10.1101/2022.07.26.501578. [13] Holtta, T., Lintunen, A., Chan, T., et al., 2017. A steady-state stomatal model of balanced leaf gas exchange, hydraulics and maximal source-sink flux. Tree Physiol. 37, 851-868. [14] Hong, Y., Zhou, Q., Hao, Y., et al., 2022. Crafting the plant root metabolome for improved microbe-assisted stress resilience. New Phytol. 234, 1945-1950. [15] Joswig, J.S., Wirth, C., Schuman, M.C., et al., 2022. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nat Ecol Evol. 6, 36-+. [16] Jensen, K. H., Berg-Soerensen, K., Bruus, H., et al., 2016. Sap flow and sugar transport in plants. Rev Mod Phys. 88, 035007. [17] Kong, DL., Wang, J., Zeng, H., et al., 2014. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytol. 203, 863-872. [18] Kong, DL., Wang, J., Wu, H., et al., 2019. Nonlinearity of root trait relationships and the root economics spectrum. Nat Commun. 10, 2203. [19] Kong, DL., Wang, J., Zeng, H., et al., 2017. The nutrient absorption-transportation hypothesis: optimizing structural traits in absorptive roots. New Phytol. 213, 1569-1572. [20] Kong, DL., Wang, J.J., Valverde-Barrantes, O.J., et al., 2021. A framework to assess the carbon supply-consumption balance in plant roots. New Phytol. 229, 659-664. [21] Dong, X.Y., Wang, H.F., Gu, J.C., et al., 2015. Root morphology, histology and chemistry of nine fern species (pteridophyta) in a temperate forest. Plant Soil 393, 215–227. [22] Kramer-Walter, K.R., Bellingham, P.J., Millar, T.R., et al., 2016. Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum. J Ecol. 104, 1299-1310. [23] Laughlin, D.C., Mommer, L., Sabatini, F.M., et al., 2021. Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs. Nat Ecol Evol. 5, 1123-+. [24] Falster, D.S., Warton, D.I., Wright, I.J., et al., 2006. User's guide to SMATR: Standardised MajorAxis Tests & Routines Version 2.0, Copyright 2006. [25] Liese, R., Leuschner, C., Meier, I.C., 2019. The effect of drought and season on root life span in temperate arbuscular mycorrhizal and ectomycorrhizal tree species. J Ecol. 107, 2226-2239. [26] Lugli, L.F., Rosa, J.S., Andersen, K.M., et al., 2021. Rapid responses of root traits and productivity to phosphorus and cation additions in a tropical lowland forest in Amazonia. New Phytol. 230, 116-128. [27] Ma, ZQ., Guo, DL., Xu, X., et al., 2018. Evolutionary history resolves global organization of root functional traits. Nature. 555, 94-97. [28] Martin, F.M., Uroz, S., Barker, D.G., 2017. Ancestral alliances: Plant mutualistic symbioses with fungi and bacteria. Science. 356, eaad4501. [29] Martin, F., Aerts, A., Ahren, D., et al., 2008. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature. 452, 88-92. [30] McCormack, M.L., Guo, D.L., Iversen, C.M., et al., 2017. Building a better foundation: improving root-trait measurements to understand and model plant and ecosystem processes. New Phytol. 215, 27-37. [31] Pineiro, J., Ochoa-Hueso, R., Drake, J.E., et al., 2020. Water availability drives fine root dynamics in aEucalyptuswoodland under elevated atmospheric CO(2) concentration. Funct Ecol. 34, 2389-2402. [32] Pregitzer, K.S., DeForest, J.L., Burton, A.J., et al., 2002, Fine root architecture of nine north American trees. Ecol Monogr. 72, 293-309. [33] Reich, P.B., 2014. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. J Ecol. 102, 275-301. [34] Rich, M.K., Vigneron, N., Libourel, C., et al., 2021. Lipid exchanges drove the evolution of mutualism during plant terrestrialization. Science. 372, 864-+. [35] Hou, X.Q., 2007. Studies on mycorrhizal biology of Dendrobium Peking Union Medical college and Chinese. Academy of Medical sciences. [36] Hummel, I., Violle, C., Devaux, J., et al., 2007. Relating root structure and anatomy to whole-plant functioning in 14 herbaceous Mediterranean species. New Phytol. 173, 313–321. [37] Khan, H.U.R., Link, W., Hocking, T.J., et al., 2007. Evaluation of physiological traits for improving drought tolerance in faba bean (Vicia faba L.). Plant Soil. 292, 205-217. [38] Steudle, E., Carol A. P., 1998. How does water get through roots? J. Exp. Bot. 322, 775-788. [39] Stock, S.C., Koester, M., Boy, J., et al., 2021. Plant carbon investment in fine roots and arbuscular mycorrhizal fungi: A cross-biome study on nutrient acquisition strategies. Sci Total Environ. 781, 146748. [40] Terrer, C., Vicca, S., Stocker, B.D., et al., 2016. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science. 353, 72-74. [41] Terrer, C., Vicca, S., Stocker, B.D., et al., 2017. Response to Comment on “Mycorrhizal association as a primary control of the CO2 fertilization effect”. Science. 355, 358-358. [42] Valverde-Barrantes, O. J., Freschet, G.T., Roumet, C. et al., 2017. A worldview of root traits: the influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants. New Phytol. 215, 1562-1573. [43] Terrer, C., Vicca, S., Stocker, B.D., et al., 2018. Ecosystem responses to elevated CO2 governed by plant-soil interactions and the cost of nitrogen acquisition. New Phytol. 217, 507-522. [44] Kong, D.L., Wang, J.J., Kardol, P, et al., 2016. Economic strategies of plant absorptive roots vary with root diameter. Biogeosciences 13, 415–424. [45] Valverde-Barrantes, O. J, Authier, L, Schimann, H, et al., 2021. Root anatomy helps to reconcile observed root trait syndromes in tropical tree species. Am J Bot. 108, 744-755. [46] Van der Heijden, M.G.A., Martin, F.M., Selosse, M.A., et al., 2015. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406-1423. [47] Wambsganss, J., Freschet, G.T., Beyer, F., et al., 2021. Tree species mixing causes a shift in fine-root soil exploitation strategies across European forests. Funct Ecol. 35, 1886-1902. [48] Wang, X.X., Du, T.T., Huang, J.L., et al., 2018. Leaf hydraulic vulnerability triggers the decline in stomatal and mesophyll conductance during drought in rice. J Exp Bot. 69, 4033-4045. [49] Li, Z.Y., Wang, Y., Mu, L.Q., 2022. How Does Deforestation Affect the Growth of Cypripedium (Orchidaceae) Species? A Simulation Experiment in Northeast China. Forests 13, 166. [50] Weemstra, M., Mommer, L., Visser, E.J., et al., 2016. Towards a multidimensional root trait framework: a tree root review. New Phytol. 211, 1159-1169. [51] Liu, B., He, J., Zeng, F., et al., 2016. Life span and structure of ephemeral root modules of different functional groups from a desert system. New Phytol 211, 103–112. [52] Liu, C., Xiang, W.H., Zou, L.M., et al., 2019. Variation in the functional traits of fine roots is linked to phylogenetics in the common tree species of Chinese subtropical forests. Plant Soil 436, 347–364. [53] Long, Y.Q., 2013. The Research of the Linkage of Root Function with Root Branch Order. Peking University. [54] Weemstra, M., Kuyper, T. W., Sterck, F. J. & Umana, M. N. 2023. Incorporating belowground traits: avenues towards a whole-tree perspective on performance. Oikos. 2023, e08827. [55] Weigelt, A., Mommer, L., Andraczek, K., et al., 2021. An integrated framework of plant form and function: the belowground perspective. New Phytol. 232, 42-59. [56] Wen, Z.H., White, P.J., Shen, J.B., et al., 2022. Linking root exudation to belowground economic traits for resource acquisition. New Phytol. 233, 1620-1635. [57] Wright, I.J., Reich, P.B., Westoby, M., et al., 2004. The worldwide leaf economics spectrum. Nature. 428, 821-827. [58] Yan, H., Freschet, G.T., Wang, H.M., et al., 2022. Mycorrhizal symbiosis pathway and edaphic fertility frame root economics space among tree species. New Phytol. 234, 1639-1653. [59] Zadworny, M., McCormack, M.L., Zytkowiak, R., et al., 2017. Patterns of structural and defense investments in fine roots of Scots pine (Pinus sylvestris L.) across a strong temperature and latitudinal gradient in Europe. Glob Change Biol. 23, 1218-1231. [60] Zhou, M., Guo, Y.M., Sheng, J., et al., 2022. Using anatomical traits to understand root functions across root orders of herbaceous species in a temperate steppe. New Phytol. 234, 422-434. [61] Zhou, Y.M., Jiang, X.J., Schaub, M., et al., Ten-year exposure to elevated CO2 increases stomatal number of Pinus koraiensis and P. sylvestriformis needles. Eur J Forest Res. 132, 899-908. [62] Zhu L.Q., Xu Y.X., Zhao L.J., et al., 2016. anatomical structure and environmental adaptability of Cymbidium cyperifolium in karst area. Guihaia. 36, 1179-1185+1164. [63] Steudle, E., Carol A. P., 1998. How does water get through roots? J. Exp. Bot. 322, 775-788. [64] Stock, S.C., Koester, M., Boy, J., et al., 2021. Plant carbon investment in fine roots and arbuscular mycorrhizal fungi: a cross-biome study on nutrient acquisition strategies. Sci. Total Environ. 781, 146748. [65] Terrer, C., Vicca, S., Stocker, B.D., et al., 2016. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science. 353, 72-74. [66] Terrer, C., Vicca, S., Stocker, B.D., et al., 2017. Response to Comment on “Mycorrhizal association as a primary control of the CO2 fertilization effect”. Science. 355, 358-358. [67] Terrer, C., Vicca, S., Stocker, B.D., et al., 2018. Ecosystem responses to elevated CO2 governed by plant-soil interactions and the cost of nitrogen acquisition. New Phytol. 217, 507-522. [68] Valverde-Barrantes, O. J., Freschet, G.T., Roumet, C. et al., 2017. A worldview of root traits: the influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants. New Phytol. 215, 1562-1573. [69] Valverde-Barrantes, O. J, Authier, L, Schimann, H, et al., 2021. Root anatomy helps to reconcile observed root trait syndromes in tropical tree species. Am. J. Bot. 108, 744-755. [70] Valverde-Barrantes, O.J., Horning, A.L., Smemo, K.A., et al., 2016. Phylogenetically structured traits in root systems influence arbuscular mycorrhizal colonization in woody angiosperms. Plant Soil 404, 1–12. [71] Van der Heijden, M.G.A., Martin, F.M., Selosse, M.A., et al., 2015. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406-1423. [72] Wahl, S., Ryser, P., 2000. Root tissue structure is linked to ecological strategies of grasses. New Phytologist 148, 459–471. [73] Wambsganss, J., Freschet, G.T., Beyer, F., et al., 2021. Tree species mixing causes a shift in fine-root soil exploitation strategies across European forests. Funct. Ecol. 35, 1886-1902. [74] Wang, N., 2020. Effects of elevated atmospheric CO2 concentration on leaf and absorptive root and functional traits. In: seedlings of 17 temperate woody and herbaceous. Northeast Forestry University. [75] Wang, Y., Dong, X.Y., Wang, H.F., et al., 2016. Root tip morphology, anatomy, chemistry and potential hydraulic conductivity vary with soil depth in three temperate hardwood species. Tree physiology 361, 99–108. [76] Wang, X.X., Du, T.T., Huang, J.L., et al., 2018. Leaf hydraulic vulnerability triggers the decline in stomatal and mesophyll conductance during drought in rice. J. Exp. Bot. 69, 4033-4045. [77] Weemstra, M., Mommer, L., Visser, E.J., et al., 2016. Towards a multidimensional root trait framework: a tree root review. New Phytol. 211, 1159-1169. [78] Wang, H.F., Wang, Z.Q., Dong, X.Y., 2019. Anatomical structures of fine roots of 91 vascular plant species from four groups in a temperate forest in Northeast China. PLoS One 14, e0215126. [79] Wang, Y.M., Wang, Y., Wang, S.Y., et al., 2020. Fine root anatomical and morphological traits of three temperate liana species in northeastern China. Journal of Beijing Forestry University 42, 42–49. [80] Weemstra, M., Kuyper, T. W., Sterck, F. J. & Umana, M. N. 2023. Incorporating belowground traits: avenues towards a whole-tree perspective on performance. Oikos. 2023, e08827. [81] Weigelt, A., Mommer, L., Andraczek, K., et al., 2021. An integrated framework of plant form and function: the belowground perspective. New Phytol. 232, 42-59. [82] Wen, Z.H., White, P.J., Shen, J.B., et al., 2022. Linking root exudation to belowground economic traits for resource acquisition. New Phytol. 233, 1620-1635. [83] Wright, I.J., Reich, P.B., Westoby, M., et al., 2004. The worldwide leaf economics spectrum. Nature. 428, 821-827. [84] Xiang, W., Huang, D.L., Zhu, S.D., 2022. absorptive root anatomical traits of 26 tropical and subtropical fern species. J Plant Ecol 46, 593–601. [85] Xu, Y., 2011. Fine root morphology, anatomy and tissue nitrogen and carbon of the first five order roots in twenty seven Chinese tropical hardwood tree species. Northeast Forestry University. [86] Xu, L.Y., 2021. Effects of nitrogen and phosphorus on leaf and root functional traits. In: seedlings of species. Northeast Forestry University. [87] Xu, H.W., Ren, Y., Liu, X.J., et al., 2022. Relationship between root tip diameter and anatomical traits among ten species of climbing plants in tropical forest. Molecular plant breeding 20, 987–995. [88] Yamauchi, T., Pedersen, O., Nakazono, M., et al., 2021. Key root traits of Poaceae for adaptation to soil water gradients. New Phytol 229, 3133–3140. [89] Yan, H., Freschet, G.T., Wang, H.M., et al., 2022. Mycorrhizal symbiosis pathway and edaphic fertility frame root economics space among tree species. New Phytol. 234, 1639-1653. [90] Yuan, Y.M., Liu, J.Y., Gao, X.L., et al., 2022. Root traits of seven Stipa species and their relations with environmental factors in temperature grasslands. Acta Ecologica Sinica 21, 1–11. [91] Zadworny, M., McCormack, M.L., Zytkowiak, R., et al., 2017. Patterns of structural and defense investments in fine roots of Scots pine (Pinus sylvestris L.) across a strong temperature and latitudinal gradient in Europe. Global Change Biol. 23, 1218-1231. [92] Zhou, M., Bai, W.M., Zhang, Y.S., et al., 2018. Multi-dimensional patterns of variation in root traits among coexisting herbaceous species in temperate steppes. J Ecol. 106, 2320–2331. [93] Zhou, M., Guo, Y.M., Sheng, J., et al., 2022. Using anatomical traits to understand root functions across root orders of herbaceous species in a temperate steppe. New Phytol. 234, 422-434. [94] Zhu L.Q., Xu Y.X., Zhao L.J., et al., 2016. Anatomical structure and environmental adaptability of Cymbidium cyperifolium in karst area. Guihaia. 36, 1179-1185+1164. |
[1] | Xue Wang, Xinrui Liu, Shuang Chen, Jiang Zhu, Yanqi Yuan, Rong Zhu, Kaixi Chen, Xue Yang, Xiaochun Wang, Weiyi Mo, Ruili Wang, Shuoxin Zhang. Elevational variation in anatomical traits of the first-order roots and their adaptation mechanisms [J]. Plant Diversity, 2025, 47(02): 291-299. |
[2] | Wenjie Guo, Lu Gong, Yan Luo, Qian Guo. Does season regulate heterochronous leaf growth? Mechanisms of petiole-lamina trade-offs in broad-leaved woody plants of the Tianshan Mountains [J]. Plant Diversity, 2024, 46(06): 755-765. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||